Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T01:50:19.406Z Has data issue: false hasContentIssue false

Different methods, different results: temporal trends in the study of nested subset patterns in parasite communities

Published online by Cambridge University Press:  10 September 2007

J. T. TIMI*
Affiliation:
Laboratorio de Parasitología, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata, Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
R. POULIN
Affiliation:
Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
*
*Corresponding author: Laboratorio de Parasitología, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. Funes 3350, (7600) Mar del Plata, Argentina. Tel: +54 223 4752426. Fax: +54 223 4753150. E-mail: [email protected]

Summary

The search for nested subset patterns has become a powerful tool for understanding the processes shaping parasite communities. Here, we re-examine the results of past studies on nestedness in parasite communities, to assess how sensitive they are to the analytical method used. Using the metric N and the null model RANDOM1, the first method available to study nested patterns, early studies concluded that nestedness was infrequent in parasite communities. In contrast later studies, using instead the metric T and the nestedness temperature calculator (NTC), found that nested subset patterns were very common in parasite communities. Recently, a new algorithm, the binary matrix nestedness temperature calculator (BINMATNEST), has been proposed to quantify nestedness. Using data on 31 helminth communities of fish hosts, we show that applying the NTC yields consistently more significant nested patterns than when N and RANDOM1 are used on the same data. The use of BINMATNEST produced results that depend on the choice of the null model. To provide a benchmark, a straightforward comparison between the observed frequencies of co-occurrences of species with those expected from their prevalence under random assembly was also made for each community. This test indicates that random structure occurs in practically all communities, even those where one of the nestedness analyses found a significant pattern. We demonstrate that the probability of finding a nested pattern in a parasite community depends entirely on the metric and null model chosen for analysis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atmar, W. and Patterson, B. D. (1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96, 373382.CrossRefGoogle ScholarPubMed
Atmar, W. and Patterson, B. D. (1995). Nestedness temperature calculator. (An Internet gopher publication in VisualBasic by AICS Research Inc., University Park, New Mexico, and The Field Museum, Chicago, II. http://www.aics-research.com/nestedness/tempcalc.html.Google Scholar
Bellocq, J. G., de, , Sará, M., Casanova, J. C., Feliu, C. and Morand, S. (2003). A comparison of the structure of helminth communities in the woodmouse, Apodemus sylvaticus, on islands of the western Mediterranean and continental Europe. Parasitology Research 90, 6470. doi: 10.1007/s00436-002-0806-1.CrossRefGoogle ScholarPubMed
Brooks, D. R., León-Règagnon, V., McLennan, D. A. and Zelmer, D. (2006). Ecological fitting as a determinant of the community structure of platyhelminth parasites of anurans. Ecology 87, S76S85. doi: 10.1890/0012-9658 (2006)87[76:EFAADO]2.0.CO;2.Google Scholar
Calvete, C., Blanco-Aguiar, J. A., Virgos, E., Cabezas-Diaz, S. and Villafuerte, R. (2004). Spatial variation in helminth community structure in the red-legged partridge (Alectoris rufa L.): effects of definitive host density. Parasitology 129, 101113. doi: 10.1017/S0031182004005165.Google Scholar
Carney, J. P. and Dick, T. A. (2000). Helminth communities of yellow perch (Perca flavescens (Mitchill)): determinants of pattern. Canadian Journal of Zoology 78, 538555. doi: 10.1139/cjz-78-4-538.CrossRefGoogle Scholar
Cutler, A. H. (1994). Nested biotas and biological conservation metrics, mechanisms, and meaning of nestedness. Landscape and Urban Planning 28, 7382.Google Scholar
Fellis, K. J., Negovetich, N. J., Esch, G. W., Horak, I. G. and Boomker, J. (2003). Pattern of association, nestedness, and species co-occurrence of helminth parasites in the greater kudu, Tragelaphus strepsiceros, in the Kruger National Park, South Africa, and the Etosha National Park, Namibia. Journal of Parasitology 89, 899907.Google Scholar
Fischer, J. and Lindenmayer, D. B. (2002). Treating the nestedness temperature calculator as a “black box” can lead to false conclusions. Oikos 99, 193199. doi: 10.1034/j.1600-0706.2002·990121.xCrossRefGoogle Scholar
González, M. T. and Poulin, R. (2005 a). Spatial and temporal predictability of the parasite community structure of a benthic marine fish along its distributional range. International Journal for Parasitology 35, 13691377. doi: 10.1016/j.ijpara.2005.07.016CrossRefGoogle ScholarPubMed
González, M. T. and Poulin, R. (2005 b). Nested patterns in parasite component communities of a marine fish along its distributional range on the Pacific coast of South America. Parasitology 131, 569577. doi: 10.1017/S0031182005007900.CrossRefGoogle ScholarPubMed
Gotelli, N. J. (2000). Null model analysis of species co-occurrence patterns. Ecology 81, 26062621. doi: 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2.Google Scholar
Gotelli, N. J. and Graves, G. R. (1996). Null Models in Ecology. Smithsonian Institution Press, Washington DC, USA.Google Scholar
Gotelli, N. J. and Rohde, K. (2002). Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecology Letters 5, 8694. doi: 10.1046/j.1461-0248.2002.00288.x.CrossRefGoogle Scholar
Guegán, J.-F. and Hugueny, B. (1994). A nested species subset pattern in tropical fish: host as major determinant of parasite infracommunity structure. Oecologia 100, 184189.Google Scholar
Guégan, J. -F. and Kennedy, C. R. (1996). Parasite richness/sampling effort/host range: the fancy three-piece jigsaw puzzle. Parasitology Today 12, 367369.CrossRefGoogle ScholarPubMed
Hayward, C. J., Perera, K. M. L. and Rohde, K. (1998). Assemblages of ectoparasites of a pelagic fish, slimy mackerel (Scomber australasicus), from south-eastern Australia. International Journal for Parasitology 28, 263273. doi: 10.1016/S0020-7519(97)00186-0.Google Scholar
Janovy, J. Jr., Clopton, R. E., Clopton, D. A., Snyder, S. D., Efting, A. and Krebs, L. (1995). Species density distributions as null models for ecologically significant interactions of parasite species in an assemblage. Ecological Modelling 77, 189196. doi: 10.1016/0304-3800(93)E0087-J.Google Scholar
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S. and Poulin, R. (2005). Nested pattern in flea assemblages across the host's geographic range. Ecography 28, 475484. doi: 10.1111/j.0906-7590.2005.04238.x.CrossRefGoogle Scholar
Kuris, A. M., Blaustein, A. R. and Alió, J. J. (1980). Hosts as islands. American Naturalist 116, 570586.CrossRefGoogle Scholar
Matĕjusová, I., Morand, S. and Gelnar, M. (2000). Nestedness in assemblages of gyrodactylids (Monogenea: Gyrodactylidea) parasitizing two species of cyprinid – with reference to generalists and specialists. International Journal for Parasitology 30, 11531158. doi: 10.1016/S0020-7519(00)00097-7.Google Scholar
Moore, J. E. and Swihart, R. K. (2007). Toward ecologically explicit null models of nestedness. Oecologia 152, 763777. doi: 10.1007/s00442-007.0696-0.CrossRefGoogle ScholarPubMed
Norton, J., Lewis, J. W. and Rollinson, D. (2004). Temporal and spatial patterns of nestedness in eel macroparasite communities. Parasitology 129, 203211. doi: 10.1017/S0031182004005517.Google Scholar
Patterson, B. D. (1990). On the temporal development of nested subset patterns of species composition. Oikos 59, 330342.Google Scholar
Patterson, B. D. and Atmar, W. (1986). Nested subset and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society 28, 6582.CrossRefGoogle Scholar
Poulin, R. (1996). Richness, nestedness, and randomness in parasite infracommunity structure. Oecologia 105, 545551. doi: 10.1007/BF00330018.Google Scholar
Poulin, R. (1997). Parasite faunas of freshwater fish: the relationship between richness and the specificity of parasites. International Journal for Parasitology 27, 10911098. doi: 10.1016/S0020-7519(97)00070-2.CrossRefGoogle ScholarPubMed
Poulin, R. and Guégan, J.-F. (2000). Nestedness, anti-nestedness, and the relationship between prevalence and intensity in ectoparasite assemblages of marine fish: a spatial model of species coexistence. International Journal for Parasitology 30, 11471152. doi: 10.1016/S0020-7519(00)00102-8.CrossRefGoogle Scholar
Poulin, R. and Valtonen, E. T. (2001). Nested assemblages resulting from host size variation: the case of endoparasite communities in fish hosts. International Journal for Parasitology 31, 11941204. doi: 10.1016/S0020-7519(01)00262-4.Google Scholar
Poulin, R. and Valtonen, E. T. (2002). The predictability of helminth community structure in space: a composition of fish populations from adjacent lakes. International Journal for Parasitology 32, 12351243. doi: 10.1016/S0020-7519(02)00109-1.CrossRefGoogle Scholar
Rodríguez-Gironés, M. A. and Santamaría, L. (2006). A new algorithm to calculate the nestedness temperature of presence-absence matrices. Journal of Biogeography 33, 924935.Google Scholar
Rohde, K., Worthen, W. B., Heap, M., Hugueny, B. and Guégan, J.-F. (1998). Nestedness in assemblages of metazoan ecto- and endoparasites of marine fish. International Journal for Parasitology 28, 543549. doi: 10.1016/S0020-7519(98)00013-7.CrossRefGoogle ScholarPubMed
Simková, A., Gelnar, M. and Morand, S. (2001). Order and disorder in ectoparasite communities: the case of congeneric gill monogeneans (Dactylogyrus spp.). International Journal for Parasitology 31, 12051230. doi: 10.1016/S0020-7519(01)00245-4.Google Scholar
Timi, J. T. and Poulin, R. (2003). Parasite community structure within and across host populations of a marine pelagic fish: how repeatable is it? International Journal for Parasitology 33, 13531362. doi: 10.1016/S0020-7519(03)00203-0.CrossRefGoogle Scholar
Ulrich, W. and Gotelli, N. J. (2007). Null model analysis of species nestedness patterns. Ecology 88, 18241831. doi: 10.1890/06-1208.1.Google Scholar
Valtonen, E. T., Pulkkinen, K., Poulin, R. and Julkunen, M. (2001). The strucuture of parasite component communities in brackish water fishes of the northeastern Baltic Sea. Parasitology 122, 471481. doi: 10.1017/S0031182001007491.CrossRefGoogle Scholar
Vidal-Martínez, V. M. and Poulin, R. (2003). Spatial and temporal repeatability in parasite community structure of tropical fish hosts. Parasitology 12, 387398. doi: 10.1017/S0031182003003792.Google Scholar
Worthen, W. B. and Rohde, K. (1996). Nested subset analyses of colonization-dominated communities: metazoan ectoparasites of marine fishes. Oikos 75, 471478.Google Scholar
Wright, D. H. and Reeves, J. H. (1992). On the meaning and measurement of nestedness of species assemblages. Oecologia 92, 416428.Google Scholar
Wright, D. H., Patterson, B. D., Mikkelson, G. M., Cutler, A. and Atmar, W. (1998). A comparative analysis of nested subset patterns of species composition. Oecologia 113, 120. doi: 10.1007/s004420050348.Google Scholar
Zelmer, D. A. and Arai, H. P. (2004). Development of nestedness: host biology as a community process in parasite infracommunities of yellow perch (Perca flavescens (Mitchill)) from Garner Lake, Alberta. Journal of Parasitology 90, 435436.Google Scholar
Zelmer, D. A., Paredes-Calderón, L., León-Règagnon, V. and García-Prieto, L. (2004). Nestedness in colonization-dominated systems: helminth infracommunities of Rana vaillanti Brocchi (Anura: Ranidae) in Los Tuxtlas, Veracruz, Mexico. Journal of Parasitology 90, 705710.CrossRefGoogle ScholarPubMed