Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T16:52:43.582Z Has data issue: false hasContentIssue false

Differences in the chemical composition and carbohydrate metabolism of Echinococcus granulosus (horse and sheep strains) and E. multilocularis

Published online by Cambridge University Press:  06 April 2009

D. P. McManus
Affiliation:
Department of Zoology and Applied Entomology, Imperial College of Science and Technology, London, SW7 2BB
J. D. Smyth
Affiliation:
Department of Zoology and Applied Entomology, Imperial College of Science and Technology, London, SW7 2BB

Summary

Metabolic studies in vitro and studies on chemical composition indicate basic biochemical differences between the horse and sheep strains of Echinococcus granulosus and between these and the closely related species, E. multilocularis. The horse strain of E. granulosus has a similar level of DNA, but significantly more polysaccharides and lipids, with less RNA and protein than the sheep strain. E. multilocularis has significantly more lipids and DNA but less polysaccharides than the horse and sheep strains of E. granulosus, more RNA and protein than the horse strain but similar protein to and less RNA than the sheep strain. Incubations under air and under 95% N2-5% CO2 for 3 h show that only E. multilocularis takes up glucose, that all three forms consume different amounts of oxygen and endogenous glycogen and produce different concentrations of lactate, succinate, acetate, malate, pyruvate, propionate and ethanol as end products of carbohydrate metabolism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agosin, M. (1957). Studies on the metabolism of Echinococcus granulosus. II. Some observations on the carbohydrate metabolism of hydatid cyst scolices. Experimental Parastology 6, 586–93.CrossRefGoogle Scholar
Agosin, M. (1968). Biochemistry and physiology of Echinococcus. Bulletin of the World Health Organization 39, 115–20.Google ScholarPubMed
Agosin, M., Von Brand, T., Rivera, G. F. & McMahon, P. (1957). Studies on the metabolism of Echinococcus granulosus. I. General chemical composition and respiratory reactions. Experimental Parasitology 6, 3751.Google Scholar
Agosin, M. & Repetto, Y. (1965). Studies on the metabolism of Echinoccocus granulosus. VIII. The pathway to succinate in E. granulosus scolices. Comparative Biochemistry and Physiology 14, 299309.Google Scholar
Barrett, J. (1976). Bioenergetics in helminths. In 2nd International Symposium on the Biochemistry of Parasites and Host,-Parasite Relationships (ed. Bossche, H. Van den), pp. 6780. Amsterdam: Elsevier.Google Scholar
Bernt, E. & Gutmann, I. (1974). Ethanol determination with alcohol dehydrogenase and NAD. In Methods of Enzymatic Analysis, 2nd ed. (ed. Bergmeyer, H. U.), pp. 14991502. New York and London: Academic Press.Google Scholar
Von Brand, T. (1973). Biochemistry of Parasites, 2nd ed.New York and London: Academic Press.Google Scholar
Czok, R. & Lamprecht, W. (1974). Pyruvate, phosphoenolpyruvate and D-glycerate-2. phosphate. In Methods of Enzymatic Analysis, 2nd ed. (ed. Bergmeyer, H. U.), pp. 1446–51. New York and London: Academic Press.Google Scholar
Dikowsky, L., Repetto, Y. & Agosin, M. (1968). Studies of the metabolism of Echinococcus granulosus. X. The mechanism of production of volatile fatty acids. Comparative Bio. chemistry and Physiology 24, 763–72.Google Scholar
Frayha, G. J. (1971). Comparative metabolism of acetate in the taeniid tapeworms Echinococcus granulosus, E. multilocularis and Taenia hydatigena. Comparative Biochemistry and Physiology 39 B, 167–70.Google Scholar
Giles, K. & Myers, A. (1965). An improved diphenylamine method for the estimation of deoxyribonucleic acid. Nature, London 206, 93CrossRefGoogle Scholar
Gutmann, I. & Wahlefield, A. W. (1974 a). L-(+)-Lactate determination with lactate dehydrogenase and NAD. In Methods of Enzymatic Analysis, 2nd ed. (ed. Bergmeyer, H. U.), pp. 1464–68. New York and London: AcademicPress.Google Scholar
Gutmann, I. & Wahlefield, A. W. (1974 b). L-(-)-Malate determinatio with malate dehydrogenase and NAD. In Methods of Enzymatic Analysis, 2nd ed. (ed. Bergmeyer, H. U.), pp. 1585–9. New York and London: Academic Press.Google Scholar
Hatch, C. (1975). Observations on the epidemiology of equine hydatidosis in Ireland. Irish Veterinary Journal 29, 155–7.Google Scholar
Kilejian, A., Sauer, K. & Schwabe, C. W. (1962). Host-parasite relationships in Echinococcosis. VIII. Infrared spectra and chemical composition of the hydatid cyst. Experimental Parasitology 12, 377–92.CrossRefGoogle ScholarPubMed
Lowry, O., Rosebrough, A., Farr, A. & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–75.Google Scholar
Morseth, D. J. (1967). The fine structure of the hydatid cyst and the protoscolex of Echinococcus granulosus. Journal of Parasitology 53, 312–25.CrossRefGoogle ScholarPubMed
Munro, H. N. & Fleck, A. (1967). The determination of nucleic acids. Methods of Biochemical Analysis 14, 133–76.Google Scholar
Roe, J. H. & Dailey, D. E. (1966). Determination of glycogen with the anthrone reagent. Analytical Biochemistry 15, 245–50.CrossRefGoogle ScholarPubMed
Schwabe, C. W. (1959). Host-parasite relationships in Echinococcosis. I. Observations on the permeability of the hydatid cyst wall. American Journal of Tropical Medicine and Hygiene 8, 20–8.CrossRefGoogle ScholarPubMed
Smyth, J. D. (1969). The Physiology of Cestodes. Edinburgh: Oliver and Boyd.Google Scholar
Smyth, J. D. (1976). Strain differences in Echinococcus granulosus, with special reference to the status of equine hydatidosis in the United Kingdom. Transactions of the Royal Society of Tropical Medicine and Hygiene 71, 93100.Google Scholar
Smyth, J. D. & Davies, Z. (1974 a). Occurrence of physiological strains of Echinococcus granulosus demonstrated by in vitro culture of protoscoleces from sheep and horse hydatid cysts. International Journal for Parasitology 4, 443–5.Google Scholar
Smyth, J. D. & Davies, Z. (1974 b). In vitro culture of the strobilar stage of Echinococcus granulosus (sheep strain): a review of basic problems and results. International Journal for Parasitology 4, 631–44.CrossRefGoogle Scholar
Smyth, J. D. & Davies, Z. (1975). In vitro suppression of segmentation in Echinococcus multilocularis with morphological transformation of protoscoleces into monozoic adults. Parasitology 71, 125–35.CrossRefGoogle ScholarPubMed
smyth, J.D., Miller, H. J., & Howkins, A. B. (1967). Further analysis of the factors controlling strobilization, differentiation and maturation of Echinococcus granulosus in vitro. Experimental Parasitology 21, 3141.CrossRefGoogle ScholarPubMed
Sweatman, G. K. & Williams, R. J. (1963). Comparative studies on the biology and morphology of Echinococcus granulosus from domestic livestock, moose and reindeer. Parasitology 53, 339–90.CrossRefGoogle ScholarPubMed
Thompson, R. C. A. & Smyth, J.D. (1975). Equine hydatidosis: a review of the current status in Great Britain and the results of an epidemiological survey. Veterinary Parasitology 1, 107–27.Google Scholar
Werner, W., Key, G. & Wielinger, H. (1970). Properties of a new chromogen for the determination of glucose in blood according to the GOD/POD (glucose oxidase-peroxidase) method. Fresenius' Zeitschrift für analytische Chemie 252, 224–8.Google Scholar
Willamson, J. R. (1974). Succinate. In Methods of Enzymatic Analysis, 2nd ed. (ed. Bergmeyer, H. U.), pp. 1616–21. New York and London: Academic Press.Google Scholar
Zöllner, N. & Kirsch, K. (1962). über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natūrlichen Lipoiden (allen bekannten Plasmalipoiden) gemeinsamen Sulphophosphovanillin-Reaktion. Zeitschrift für die gesamte experimentelle Medizin 135, 545–61.CrossRefGoogle Scholar