Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T16:21:16.276Z Has data issue: false hasContentIssue false

Diagnosis of toxoplasmosis in pregnancy. Evaluation of latex–protein complexes by immnunoagglutination

Published online by Cambridge University Press:  14 March 2017

LEANDRO E. PERETTI
Affiliation:
INTEC (Universidad Nacional del Litoral and CONICET), Santa Fe (3000), Argentina
VERÓNICA D. G. GONZALEZ
Affiliation:
INTEC (Universidad Nacional del Litoral and CONICET), Santa Fe (3000), Argentina
IVÁN S. MARCIPAR
Affiliation:
Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe (3000), Argentina
LUIS M. GUGLIOTTA*
Affiliation:
INTEC (Universidad Nacional del Litoral and CONICET), Santa Fe (3000), Argentina
*
*Corresponding author: INTEC, Güemes 3450, Santa Fe, Argentina. E-mail: [email protected]

Summary

The aim of this work was to obtain a reagent based on latex particles for ruling out acute toxoplasmosis in pregnant women by immunoagglutination (IA). Latex–protein complexes (LPC) were previously synthesized coupling the recombinant protein of Toxoplasma gondii P22Ag and the homogenate of the parasite to latex particles with different size, chemical functionality and charge density. LPC were tested in IA assays against a panel of 72 pregnant women serum samples. Results were analysed through receiver operating characteristic curves, determining area under the curve (AUC), sensitivity, specificity positive and negative predictive values (PPV and NPV, respectively). It was observed that the antigenicity of proteins was not affected during sensitization by either physical adsorption or covalent coupling. The best results in the sense of maximizing discrimination of low avidity sera from chronic ones were observed for the IA test based on latex particles with carboxyl functionality and the recombinant P22Ag, obtaining an AUC of 0·94, a sensitivity of 100% and a NPV of 100%. In this way, the proposed test could be useful for the toxoplasmosis diagnosis in pregnant women, with the advantages of being cheap, rapid and easy to be implemented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baril, L., Ancelle, T., Goulet, V., Thulliez, P., Tirard-Fleury, V. and Carme, B. (1999). Risk factors for Toxoplasma infection in pregnancy: a case-control study in France. Scandinavian Journal of Infectious Diseases 31, 305309.Google ScholarPubMed
Carral, L., Kaufer, F., Durlach, R., Freuler, C., Olejnik, P., Nadal, M., Corazza, R., Pari, M., García, L., Córdoba, S., Rodriguez, M., Ceriotto, M. and García, G. (2008). Estudio Multicentrico para la Prevencion de la Toxoplasmosis Prenatal en Buenos Aires. Medicina 68, 417422.Google Scholar
Costa, J., Peretti, L., García, V., Peverengo, L., Gonzalez, V., Gugliotta, L., Dalla Fontana, M., Lagier, C. and Marcipar, I. (2016). P35 and P22 Toxoplasma gondii antigens abbreviate regions to diagnose acquired toxoplasmosis during pregnancy: towards single-sample assays. Clinical Chemistry and Laboratory Medicine 55. https://doi.org/10.1515/cclm-2016-0331 Google Scholar
Cummins, A. J., Moody, A. H., Lalloo, K. and Chiodini, P. L. (1994). Development of a rapid latex agglutination test for the detection of visceral leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 88, 300.Google Scholar
Dubey, J. P., Laurin, E. and Kwowk, O. C. H. (2016). Validation of the modified agglutination test for the detection of Toxoplasma gondii in free-range chickens by using cat and mouse bioassay. Parasitology 143, 314319.Google Scholar
Durlach, R., Kaufer, F., Carral, L., Freuler, C., Ceriotto, M., Rodriguez, M., Freilij, H., Altcheh, J., Vazquez, L., Corazza, R., Dalla Fontana, M., Arienti, H., Sturba, E., Gonzalez Ayala, S., Cecchini, E., Salomon, C., Nadal, M., Gutierrez, N. and Guarnera, E. (2008). Consenso argentino de toxoplasmosis congenita. Medicina 68, 7587.Google Scholar
Edelhofer, R. and Prossinger, H. (2010). Infection with Toxoplasma gondii during pregnancy: seroepidemiological studies in Austria. Zoonoses and Public Health 56, 252256.Google Scholar
El-Awady, A., Mahgoub, A., Naguib, N. and Ismail, M. (2009). Comparative study on the diagnostic value of a recently introduced quantitative chemiluminescence, a semi quantitative ELISA and an IHA titration in Toxoplasma gondii serology. Kasr el Aini Medical Journal 15, 1116.Google Scholar
Garcia, V. S., Gonzalez, V. D. G., Vega, J. R., Marcipar, I. S. and Gugliotta, L. M. (2012). Synthesis of carboxylated and acetal latexes by emulsion polymerization. Application to the production of immunoagglutination test for detecting Chagas’ disease. Latin American Applied Research 42, 405412.Google Scholar
Garcia, V. S., Gonzalez, V. D. G., Caudana, P. C., Vega, J. R., Marcipar, I. S. and Gugliotta, L. M. (2013). Synthesis of latex–antigen complexes from single and multiepitope recombinant proteins. Application in immunoagglutination assays for the diagnosis of Trypanosoma cruzi infection. Colloids and Surfaces B: Biointerfaces 101, 384391.Google Scholar
Garcia, V. S., Gonzalez, V. D. G., Marcipar, I. S., Vega, J. R. and Gugliotta, L. M. (2014). Optimisation and standardisation of an immunoagglutination assay for the diagnosis of Trypanosoma cruzi infection based on latex-(recombinant antigen) complexes. Tropical Medicine and International Health 19, 3746.Google Scholar
Gonzalez, V. D. G., Garcia, V. S., Vega, J. R., Marcipar, I. S., Meira, G. R. and Gugliotta, L. M. (2010). Immunodiagnosis of Chagas disease: synthesis of three latex–protein complexes containing different antigens of Trypanosoma cruzi . Colloids and Surfaces. B, Biointerfaces 77, 1217.Google Scholar
Klun, I., Djurkovic-Djakovic, O. and Thulliez, P. (2007). Comparison of a commercial ELISA with the modified agglutination test for the detection of Toxoplasma gondii infection in naturally exposed sheep. Zoonoses and Public Health 54, 165168.CrossRefGoogle ScholarPubMed
Li, S., Maine, G., Suzuki, Y., Araujo, F., Galvan, G., Remington, J. and Parmley, S. (2000). Serodiagnosis of recently acquired Toxoplasma gondii infection with a recombinant antigen. Journal of Clinical Microbiology 38, 179184.CrossRefGoogle ScholarPubMed
Moraveji, M., Hosseini, A., Moghaddara, N., Namavari, M. M. and Eskandari, M. H. (2012). Development of latex agglutination test with recombinant NcSAG1 for the rapid detection of antibodies to Neospora caninum in cattle. Veterinary Parasitology 189, 211217.Google Scholar
Parmley, S. F., Sgarlato, G. D., Mark, J., Prince, J. B. and Remington, J. S. (1992). Expression, characterization, and serologic reactivity of recombinant surface antigen P22 of Toxoplasma gondii . Journal of Clinical Microbiology 30, 11271133.Google Scholar
Peretti, L. E., Gonzalez, V. D. G., Marcipar, I. S. and Gugliotta, L. M. (2014). Latex–protein complexes from an acute phase recombinant antigen of Toxoplasma gondii for the diagnosis of recently acquired toxoplasmosis. Colloids and Surfaces B: Biointerfaces 120, 8896.Google Scholar
Peretti, L. E., Costa, J. G., Gonzalez, V. D. G., Marcipar, I. S. and Gugliotta, L. M. (2016). Synthesis and characterization of latex–protein complexes from different antigens of toxoplasma gondii for immunoagglutination assays. International Journal of Polymeric Materials and Polymeric Biomaterials, 65, 938946.Google Scholar
Smits, H., Chee, H., Eapen, C., Kuriakose, M., Sugathan, S., Gasem, M., Yersin, C., Sakasi, D., Lai-a-Fat, R., Hartskeerl, R., Liesdek, B., Abdoe, T., Goris, M. and Gussenhoven, G. (2001). Latex based, rapid and easy assay for human leptospirosis in a single test format. Tropical Medicine and International Health 6, 114118.CrossRefGoogle Scholar
Steinparzer, R., Reisp, K., Grunberger, B., Kofer, J., Schmoll, F. and Sattler, T. (2015). Comparison of different commercial serological tests for the detection of Toxoplasma gondii antibodies in serum of naturally exposed pigs. Zoonoses and Public Health 62, 119124.CrossRefGoogle ScholarPubMed
Swets, J. A. and Pickett, R. M. (1982). Evaluation of Diagnostic Systems: Methods from Signal Detection Theory. Academic Press, New York.Google Scholar