Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T06:15:11.813Z Has data issue: false hasContentIssue false

Development and assessment of an improved recombinant multiepitope antigen-based immunoassay to diagnose chronic Chagas disease

Published online by Cambridge University Press:  28 March 2018

Luz María Peverengo
Affiliation:
Laboratorio de Tecnología Inmunológica (Facultad de Bioquímica y Ciencias Biológicas-Universidad Nacional del Litoral), Santa Fe, Argentina
Valeria Garcia
Affiliation:
INTEC (CONICET-UNL), Santa Fe, Argentina
Luz María Rodeles
Affiliation:
Laboratorio de Tecnología Inmunológica (Facultad de Bioquímica y Ciencias Biológicas-Universidad Nacional del Litoral), Santa Fe, Argentina Laboratorio de Investigación en Ciencias Biomédicas (Facultad de Ciencias Médicas–Universidad Nacional del Litoral), Santa Fe, Argentina
Diego Mendicino
Affiliation:
Centro de Investigaciones sobre Endemias Nacionales (FBCB-UNL), Santa Fe, Argentina
Miguel Vicco
Affiliation:
Laboratorio de Investigación en Ciencias Biomédicas (Facultad de Ciencias Médicas–Universidad Nacional del Litoral), Santa Fe, Argentina
Claudia Lagier
Affiliation:
Dpto. de Quimica Analitica (FBIOyF-UNR), Rosario, Argentina
Verónica Gonzalez
Affiliation:
INTEC (CONICET-UNL), Santa Fe, Argentina
Luis Gugliotta
Affiliation:
INTEC (CONICET-UNL), Santa Fe, Argentina
Iván Marcipar*
Affiliation:
Laboratorio de Tecnología Inmunológica (Facultad de Bioquímica y Ciencias Biológicas-Universidad Nacional del Litoral), Santa Fe, Argentina Laboratorio de Investigación en Ciencias Biomédicas (Facultad de Ciencias Médicas–Universidad Nacional del Litoral), Santa Fe, Argentina
*
Author for correspondence: Luz María Peverengo, E-mail: [email protected]

Abstract

The use of chimeric molecules fusing several antigenic determinants is a promising strategy for the development of low-cost, standardized and reliable kits to determine specific antibodies. In this study, we designed and assessed a novel recombinant chimera that complements the performance of our previously developed chimera, CP1 [FRA and SAPA antigens (Ags)], to diagnose chronic Chagas disease. The new chimeric protein, named CP3, is composed of MAP, TcD and TSSAII/V/VI antigenic determinants. We compared the performance of both chimeric Ags using a panel of 67 Trypanosoma cruzi-reactive sera and 67 non-reactive ones. The sensitivity of CP3 vs CP1 was 100 and 90.2%, and specificity was 92.5 and 100%, respectively. The mixture of CP1 + CP3 achieved 100% of sensitivity and specificity. More importantly, an additional subset of 17 sera from patients with discordant results of conventional serological methods was analysed; the CP1 + CP3 mixture allowed us to accurately classify 14 of them with respect to IIF, the usual technique used in most of the reference centres. These results show an improved performance of the CP1 + CP3 mixture in comparison with enzyme-linked immunosorbent assay and indirect haemagglutination commercial assays.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, S, Silber, AM, Brito, MEF, Ribone, ME, Lagier, CM and Marcipar, IS (2006) Design, construction, and evaluation of a specific chimeric antigen to diagnose Chagasic infection. Journal of Clinical Microbiology 44, 37683774.Google Scholar
Bainor, A, Chang, L, McQuade, TJ, Webb, B and Gestwicki, JE (2011) Bicinchoninic acid (BCA) assay in low volume. Analytical Biochemistry 410, 310312.Google Scholar
Balouz, V, Cámara, MdLM, Cánepa, GE, Carmona, SJ, Volcovich, R, Gonzalez, N, Altcheh, J, Agüero, F and Buscaglia, CA (2015) Mapping antigenic motifs in the trypomastigote small surface antigen from Trypanosoma cruzi. Clinical and Vaccine Immunology: CVI 22, 304312.Google Scholar
Bhattacharyya, T, Brooks, J, Yeo, M, Carrasco, HJ, Lewis, MD, Llewellyn, MS and Miles, MA (2010) Analysis of molecular diversity of the Trypanosoma cruzi trypomastigote small surface antigen reveals novel epitopes, evidence of positive selection and potential implications for lineage-specific serology. International Journal for Parasitology 40, 921928.Google Scholar
Burgos, JM, Diez, M, Vigliano, C, Bisio, M, Risso, M, Duffy, T, Cura, C, Brusses, B, Favaloro, L, Leguizamon, MS, Lucero, RH, Laguens, R, Levin, MJ, Favaloro, R and Schijman, AG (2010) Molecular identification of Trypanosoma cruzi discrete typing units in end-stage chronic Chagas heart disease and reactivation after heart transplantation. Clinical Infectious Diseases 51, 485495.Google Scholar
Camussone, C, Gonzalez, V, Belluzo, MS, Pujato, N, Ribone, ME, Lagier, CM and Marcipar, IS (2009) Comparison of recombinant Trypanosoma cruzi peptide mixtures versus multiepitope chimeric proteins as sensitizing antigens for immunodiagnosis. Clinical and Vaccine Immunology: CVI 16, 899905.Google Scholar
Carvalho, MR, Krieger, MA, Almeida, E, Oelemann, W, Shikanai-Yassuda, MA, Ferreira, AW, Pereira, JB, Sáez-Alquézar, A, Dorlhiac-Llacer, PE and Chamone, DF (1993) Chagas’ disease diagnosis: evaluation of several tests in blood bank screening. Transfusion 33, 830834.Google Scholar
Cimino, RO, Rumi, MM, Ragone, P, Lauthier, J, Alberti D’ Amato, A, Quiroga, IRL, Gil, JF, Cajal, SP, Acosta, N, Juárez, M, Krolewiecki, A, Orellana, V, Zacca, R, Marcipar, I, Diosque, P and Nasser, JR (2011) Immuno-enzymatic evaluation of the recombinant TSSA-II protein of Trypanosoma cruzi in dogs and human sera: a tool for epidemiological studies. Parasitology 138, 9951002.Google Scholar
da Silveira, JF, Umezawa, ES and Luquetti, AO (2001) Chagas disease: recombinant Trypanosoma cruzi antigens for serological diagnosis. Trends in Parasitology 17, 286291.Google Scholar
De Marchi, CR, Di Noia, JM, Frasch, ACC, Amato Neto, V, Almeida, IC and Buscaglia, CA (2011) Evaluation of a recombinant Trypanosoma cruzi mucin-like antigen for serodiagnosis of Chagas’ disease. Clinical and Vaccine Immunology: CVI 18, 18501855.Google Scholar
Di Noia, JM, Buscaglia, CA, De Marchi, CR, Almeida, IC and Frasch, ACC (2002) A Trypanosoma cruzi small surface molecule provides the first immunological evidence that Chagas’ disease is due to a single parasite lineage. The Journal of Experimental Medicine 195, 401413.Google Scholar
Granjon, E, Dichtel-Danjoy, M-L, Saba, E, Sabino, E, Campos de Oliveira, L and Zrein, M (2016) Development of a novel multiplex immunoassay multi-cruzi for the serological confirmation of Chagas disease. PLoS Neglected Tropical Diseases 10, e0004596.Google Scholar
Houghton, RL, Benson, DR, Reynolds, LD, McNeill, PD, Sleath, PR, Lodes, MJ, Skeiky, YAW, Leiby, DA, Badaro, R and Reed, SG (1999) A multi-epitope synthetic peptide and recombinant protein for the detection of antibodies to Trypanosoma cruzi in radioimmunoprecipitation-confirmed and consensus-positive sera. The Journal of Infectious Diseases 179, 12261234.Google Scholar
Houghton, RL, Benson, DR, Reynolds, L, McNeill, P, Sleath, P, Lodes, M, Skeiky, YAW, Badaro, R, Krettli, AU and Reed, SG (2000) Multiepitope synthetic peptide and recombinant protein for the detection of antibodies to Trypanosoma cruzi in patients with treated or untreated Chagas’ disease. The Journal of Infectious Diseases 181, 325330.Google Scholar
Laemmli, UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.Google Scholar
Marcipar, IS and Lagier, CM (2012) Advances in serological diagnosis of Chagas' disease by using recombinant proteins. In Rodriguez-Morales, Alfonso J. (ed.), Current Topics in Tropical Medicine. Rijeka, Croatia: InTech, pp. 273298. doi: 10.5772/28100.Google Scholar
Ministerio de Salud de la Nación Argentina (2012) Guías para la atención al paciente infectado con Trypanosoma cruzi (Enfermedad de Chagas). Available online at http://www.msal.gob.ar/chagas/images/stories/Equipos/Guia_Nacional_Chagas_version_27092012.pdfGoogle Scholar
Moure, Z, Angheben, A, Molina, I, Gobbi, F, Espasa, M, Anselmi, M, Salvador, F, Tais, S, Sánchez-Montalvá, A, Pumarola, T, Albajar-Viñas, P and Sulleiro, E (2016) Serodiscordance in chronic Chagas disease diagnosis: a real problem in non-endemic countries. Clinical Microbiology and Infection 22, 788792.Google Scholar
National Institutes of Health (2016) NCI Best Practices for Biospecimen Resources. Available online at https://biospecimens.cancer.gov/bestpractices/2016-NCIBestPractices.pdfGoogle Scholar
Oelemann, WM, Vanderborght, BO, Verissimo Da Costa, GC, Teixeira, MG, Borges-Pereira, J, De Castro, JA, Coura, JR, Stoops, E, Hulstaert, F, Zrein, M and Peralta, JM (1999) A recombinant peptide antigen line immunoassay optimized for the confirmation of Chagas’ disease. Transfusion 39, 711717.Google Scholar
Praast, G, Herzogenrath, J, Bernhardt, S, Christ, H and Sickinger, E (2011) Evaluation of the Abbott ARCHITECT Chagas prototype assay. Diagnostic Microbiology and Infectious Disease 69, 7481.Google Scholar
Santos, FLN, Celedon, PAF, Zanchin, NIT, Souza, WV, de Silva, ED, da Foti, L, Krieger, MA and Gomes, YdM (2017) Accuracy of chimeric proteins in the serological diagnosis of chronic Chagas disease – a phase II study. PLoS Neglected Tropical Diseases 11, e0005433.Google Scholar
Umezawa, ES, Bastos, SF, Coura, JR, Levin, MJ, Gonzalez, A, Rangel-Aldao, R, Zingales, B, Luquetti, AO and da Silveira, JF (2003) An improved serodiagnostic test for Chagas’ disease employing a mixture of Trypanosoma cruzi recombinant antigens. Transfusion 43, 9197.Google Scholar
World Health Organization (2002) Control of Chagas disease: second report of the WHO expert committee. Geneva: WHO.Google Scholar
World Health Organization (2010) Report 1. Anti-Trypanosoma cruzi Assays Operational Characteristics. Geneva: WHO.Google Scholar
World Health Organization (2015) Weekly epidemiological record Relevé épidémiologique hebdomadaire. Geneva: WHO.Google Scholar