Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T12:16:44.878Z Has data issue: false hasContentIssue false

Detection of trypanosome infections in the saliva of tsetse flies and buffy-coat samples from antigenaemic but aparasitaemic cattle

Published online by Cambridge University Press:  06 April 2009

P. A. O. Majiwa
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
R. Thatthi
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
S. K. Moloo
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
J. H. P. Nyeko
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
L. H. Otieno
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
S. Maloo
Affiliation:
Kenya Agricultural Research Institute (KART)/International Livestock Centre for Africa (ILCA), P.O. Box 80147, Mombasa, Kenya

Summary

Relatively simple protocols employing non-radioactive DNA probes have been used for the detection of African trypanosomes in the blood of mammalian hosts and the saliva of live tsetse flies. In combination with the polymerase chain reaction (PCR), the protocols revealed trypanosomes in buffy-coat samples from antigenaemic but aparasitaemic cattle and in the saliva of live, infected tsetse flies. Furthermore, the protocols were used to demonstrate concurrent natural infections of single tsetse flies with different species of African trypanosomes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barker, R. H., Banchongaksorn, T., Courval, J. M., Suwonkerd, W., Rimwungtragoon, K. & Wirth, D. F. (1992). A simple method to detect Plasmodium falciparum directly from blood samples using the polymerase chain reaction. American Journal of Tropical Medicine and Hygiene 46, 416–26.CrossRefGoogle ScholarPubMed
Bishop, R., Sohanpal, B., Kariuki, D. P., Young, A. S., Nene, V., Baylis, H., Allsop, B. A., Spooner, P. R., Dolan, T. T. & Morzaria, S. P. (1992). Detection of carrier state in Theileria parva-infected cattle by the polymerase chain reaction. Parasitology 104, 215–32.CrossRefGoogle ScholarPubMed
Brightwell, R., Dransfield, R. D. & Kyorku, C. (1991). Improvement of a low cost trapping technology for Glossina pallidipes and G. longipennis. Medical and Veterinary Entomology 5, 153–64.CrossRefGoogle Scholar
Buxton, P. A. (1955). The Natural History of Tsetse Flies. London School of Hygiene and Tropical Medicine Mem. No. 10, London.Google Scholar
Caskey, C. T. (1987). Disease diagnosis by recombinant DNA methods. Science 236, 1223–9.CrossRefGoogle ScholarPubMed
Diaz, C., Nussenzweig, V. & Gonzalez, A. (1992). An improved polymerase chain reaction assay to detect Trypanosoma cruzi in blood. American Journal of Tropical Medicine and Hygiene 46, 616–23.CrossRefGoogle ScholarPubMed
Dickin, S. K. & Gibson, W. C. (1989). Hybridization with repetitive probe reveals the presence of small chromosomes in Trypanosoma vivax. Molecular and Biochemical Parasitology 33, 135–42.CrossRefGoogle ScholarPubMed
Dukes, P., McNamara, J. J. & Godfrey, D. G. (1991). Elusive trypanosomes. Annals of Tropical Medicine and Parasitology 85, 2132.CrossRefGoogle ScholarPubMed
Feinberg, A. P. & Vogelstein, B. (1983). A technique for radio-labelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.CrossRefGoogle Scholar
Gibson, W. C., Dukes, P. & Gashumba, J. K. (1988). Species-specific DNA probes for the identification of African trypanosomes in tsetse flies. Parasitology 97, 6373.CrossRefGoogle ScholarPubMed
Gibson, W. & Ferris, V. (1992). Sequential infection of tsetse flies with Trypanosoma congolense and Trypanosoma brucei. Acta Tropica 50, 345–52.CrossRefGoogle ScholarPubMed
Gibson, W. C., Marshall, T. F. de C & Godfrey, D. G. (1980). Numerical analysis of enzyme polymorphism: a new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. Advances in Parasitology 18, 175246.CrossRefGoogle Scholar
Hide, G. & Tait, A. (1991). The molecular epidemiology of parasites. Experientia 47, 128–42.CrossRefGoogle ScholarPubMed
Hill, S. M., Urwin, R. & Crampton, J. M. (1991). A comparison of nonradioactive labelling and detection systems with oligonucleotide probes for the species identification of mosquitoes in the Anopheles gambia complex. American Journal of Tropical Medicine and Hygiene 44, 609–22.CrossRefGoogle Scholar
Hill, S. M., Urwin, R. & Crampton, J. M. (1992). A simplified, non-radioactive DNA probe protocol for field identification of insect vector specimens. Transactions of the Royal Society for Tropical Medicine and Hygiene 86, 213–15.CrossRefGoogle ScholarPubMed
Hoare, C. A. (1970). Systematic description of the mammalian trypanosomes of Africa. In The African Trypanosomiases (ed. Mulligan, H. W.), pp. 359. London: George Allen and Unwin.Google Scholar
Höltke, H. J., Sagner, G., Kessler, C. & Schmitz, G. (1992). Sensitive chemiluminescent detection of digoxigenin-labelled nucleic acids: a fast and simple protocol and its applications. Bio Techniques 12, 104–13.Google Scholar
Janssen, J. A. H. A. & Wijers, D. J. B. (1974). Trypanosoma simiae at the Kenya coast: a correlation between virulence and the transmitting species of Glossina. Annals of Tropical Medicine and Parasitology 68, 519.CrossRefGoogle Scholar
Jenni, L., Marti, S., Schweizer, J., Betschart, B., Le Page, R. W. F., Wells, J. M., Tait, A., Paindervoine, P., Pays, E. & Steinert, M. (1986). Hybrid formation between African trypanosomes during cyclical transmission. Nature, London 322, 173–5.CrossRefGoogle ScholarPubMed
Kimmel, B. E., ole-Moiyoi, O. K. & Young, J. R. (1987). Ingi, a 5·2 kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian lines. Molecular and Cellular Biology 7, 1465–75.Google ScholarPubMed
Kukla, B. A., Majiwa, P. A. O., Young, J. R., Moloo, S. K. & ole-Moiyoi, O. K. (1987). Use of species-specific DNA probes for detection and identification of trypanosome infection in tsetse flies. Parasitology 95, 116.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Maina, M., Waitumbi, J. N., Mihok, S. & Zweygarth, E. (1993). Trypanosoma (Nannomonas) congolense: molecular characterization of a new genotype from Tsavo, Kenya. Parasitology 106, 151–62.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Masake, R. A., Nantulya, V. M., Hamers, R. & Matthyssens, G. (1985). Trypanosoma (Nannomonas) congolense: identification of two karyotypic groups. European Molecular Biology Organization Journal 4, 3307–13.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., ole-Moiyoi, O. K. & Nantulya, V. M. (1993). New techniques for diagnosis of the African trypanosomiases. AgBiotech News and Information 5, 115N–20N.Google Scholar
Majiwa, P. A. O. & Otieno, L. H. (1990). Recombinant DNA probes reveal simultaneous infection of tsetse flies with different trypanosome species. Molecular and Biochemical Parasitology 40, 245–54.CrossRefGoogle ScholarPubMed
Masiga, D. K., Smyth, A. J., Hayes, P., Bromidge, T. J. & Gibson, W. C. (1992). Sensitive detection of trypanosomes in tsetse flies by DNA amplification. International Journal for Parasitology 22, 909–18.CrossRefGoogle ScholarPubMed
McNamara, J. J. & Snow, W. F. (1991). Improved identification of Nannomonas infections in tsetse flies from the Gambia. Acta Tropica 48, 127–39.CrossRefGoogle Scholar
Mihok, S., Munyoki, E., Brett, R. A., Jonyo, J. F., Röttcher, D., Majiwa, P. A. O., Kang'ethe, E. K., Kaburia, H. F. A. & Zweygarth, E. (1992). Trypanosomiasis and the conservation of black rhinoceros (Diceros bicornis) at the Ngulia Rhino Sanctuary, Tsavo West National Park, Kenya. African Journal of Ecology 30, 103–15.CrossRefGoogle Scholar
Moser, D. R., Cook, G. A., Ochs, D. E., Bailey, C. P., McKane, M. R. & Donelson, J. E. (1989). Detection of Trypanosoma congolense and T. brucei subspecies by DNA amplification using the polymerase chain reaction. Parasitology 99, 5766.CrossRefGoogle Scholar
Murray, M., Murray, P. K. & McIntyre, W. I. M. (1977). An improved parasitological technique for diagnosis of African trypanosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 71, 325–6.CrossRefGoogle ScholarPubMed
Nantulya, V. M. & Lindqvist, K. J. (1989). Antigen detection enzyme immunoassay for the diagnosis of Trypanosoma Vivax, T. congolense and T. brucei infections in cattle. Tropical Medicine and Parasitology 40, 267–72.Google Scholar
Nyeko, J. H. P., ole-Moiyoi, O. K., Majiwa, P. A. O., Otieno, L. H. & Ociba, P. M. (1990). Characterization of trypanosome isolates from Uganda using species-specific DNA probes reveals predominance of mixed infections. Insect Science and its Applications 11, 271–80.Google Scholar
Roberts, C. J. (1971). The lack of infectivity to cattle of a strain of Trypanosoma simiae transmitted by Glossina morsitans and G. tachinoides. Annals of Tropical Medicine and Parasitology 65, 319–26.CrossRefGoogle ScholarPubMed
Solari, A., Venegas, J., Gonzalez, E. & Vasquez, C. (1991). Detection and classification of Trypanosoma cruzi by DNA hybridization with non-radioactive probes. Journal of Protozoology 38, 559–65.CrossRefGoogle Scholar
Stephen, L. E. (1966). Pig Trypanosomiasis in Africa. Farnham Royal: Commonwealth Agriculture Bureau.Google Scholar
Stone, T. & Durrant, I. (1992). Enhanced chemiluminescence for the detection of membrane-bound nucleic acid sequences: advantages of the Amersham system. Genetic Analysis Techniques and Applications 8, 230–7.Google Scholar
Tait, A. (1980). Evidence for diploidy and mating in trypanosomes. Nature, London 287, 536–8.CrossRefGoogle ScholarPubMed
Tait, A. (1983). Sexual processes in the kinetoplastida. Parasitology 86, 2957.CrossRefGoogle ScholarPubMed
Wilson, S. M. (1991). Nucleic acid techniques and the detection of parasitic diseases. Parasitology Today 7, 255–9CrossRefGoogle ScholarPubMed
Yang, Q. J., Tata, P. V., Park-Turkel, H. S. & Waksal, H. W.. (1991). The application of AmpliProbe® in diagnostics. Bio Techniques 11, 392–7.Google ScholarPubMed
Yehle, C. O., Patterson, W. L., Boguslawski, S. J., Albarella, J. P., Yip, K. F. & Carrico, R. J. (1987). A solution hybridization assay for ribosomal RNA from bacteria using biotinylated probes and enzyme-labelled antibody to DNA:RNA. Molecular and Cellular Probes 1, 177–93.CrossRefGoogle Scholar