Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T22:54:35.093Z Has data issue: false hasContentIssue false

Detection of Trypanosoma congolense and Trypanosoma brucei subspecies by DNA amplification using the polymerase chain reaction

Published online by Cambridge University Press:  06 April 2009

D. R. Moser
Affiliation:
Department of Biochemistry, and Diabetes and Endocrinology Research Center, University of Iowa, Iowa City, IA 52242
G. A. Cook
Affiliation:
Department of Biochemistry, and Diabetes and Endocrinology Research Center, University of Iowa, Iowa City, IA 52242
Diane E. Ochs
Affiliation:
Department of Biochemistry, and Diabetes and Endocrinology Research Center, University of Iowa, Iowa City, IA 52242
Cheryl P. Bailey
Affiliation:
Department of Biochemistry, and Diabetes and Endocrinology Research Center, University of Iowa, Iowa City, IA 52242
Melissa R. McKane
Affiliation:
Department of Biochemistry, and Diabetes and Endocrinology Research Center, University of Iowa, Iowa City, IA 52242
J. E. Donelson
Affiliation:
Department of Biochemistry, and Diabetes and Endocrinology Research Center, University of Iowa, Iowa City, IA 52242

Summary

The nuclear DNA of Trypanosoma congolense contains a family of highly conserved 369 base pair (bp) repeats. The sequences of three cloned copies of these repeats were determined. An unrelated family of 177 bp repeats has previously been shown to occur in the nuclear DNA of Trypanosoma brucei brucei (Sloof et al. 1983a). Oligonucleotides were synthesized which prime the specific amplification of each of these repetitive DNAs by the polymerase chain reaction (PCR). Amplification of 10% of the DNA in a single parasite of T. congolense or T. brucei spp. produced sufficient amplified product to be visible as a band in an agarose gel stained with ethidium bromide. This level of detection, which does not depend on the use of radioactivity, is about 100 times more sensitive than previous detection methods based on radioactive DNA probes. The oligonucleotides did not prime the amplification of DNA sequences in other trypanosome species nor in Leishmania, mouse or human DNAs. Amplification of DNA from the blood of animals infected with T. congolense and/or T. brucei spp. permitted the identification of parasite levels far below that detectable by microscopic inspection. Since PCR amplification can be conducted on a large number of samples simultaneously, it is ideally suited for large-scale studies on the prevalence of African trypanosomes in both mammalian blood and insect vectors.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borst, P., Van Der Ploeg, L. H. T., Van Hoek, J. F. M., Tas, J., & James, J., (1982). On the DNA content and ploidy of trypanosomes. Molecular and Biochemical Parasitology 6, 13–23.CrossRefGoogle ScholarPubMed
Campbell, C., Esser, K., Wellde, B., & Diggs, C., (1979). Isolation and characterization of a new serodeme of Trypanosoma rhodesiense. American Journal of Tropical Medicine and Hygiene 28, 974–83.CrossRefGoogle ScholarPubMed
Choromanski, L., Honigberg, B. M., & Honhon, P. M., (1984). Trypanosoma (Nannomonas) congolense: Analysis by fluorescein-conjugated plant lectins of surface glycoproteins of cloned variant antigen types differing in infectivity of mice. Journal of Parasitology 70, 634–43.CrossRefGoogle Scholar
Cook, G., & Donelson, J. E., (1987). Mini-exon gene repeats of Trypanosoma (Nannomonas) congolense have internal repeats of 190 base pairs. Molecular and Biochemical Parasitology 25, 113–22.CrossRefGoogle ScholarPubMed
De Bruijn, M. H. L., (1988). Diagnostic DNA amplification no respite for the elusive parasite. Parasitology Today 4, 293–5.CrossRefGoogle ScholarPubMed
Donelson, J. E., & Rice-Ficht, A., (1985). Molecular biology of trypanosome antigenic variation. Microbiological Reviews 49, 107–25.CrossRefGoogle ScholarPubMed
Dvorak, J. A., Hall, T. E., Crane, M. S. J., Engel, J. C., Mcdaniel, J. P., & Uriegas, R., (1982). Trypanosoma cruzi: Flow cytometric analysis. I. Analysis of total DNA/organism by means of mithramycin-induced fluorescence. Journal of Protozoology 29, 430–7.CrossRefGoogle ScholarPubMed
Embury, S. H., Scharf, S. J., Saiki, R. K., Gholson, M. A., Golbus, M., Arnheim, N., & Erlich, H. A., (1987). Rapid prenatal diagnosis of sickle cell anemia by a new method of DNA analysis. New England Journal of Medicine 316, 656–61.CrossRefGoogle ScholarPubMed
Gibson, W. C., Dukes, P., & Gashumba, J. K., (1988). Species-specific DNA probes for the identification of African trypanosomes in tsetse flies. Parasitology 97, 6373.CrossRefGoogle ScholarPubMed
Gonzalez, A., Prediger, E., Huecas, M. E., Nogueira, N., & Lizardi, P. M., (1984). Minichromosomal repetitive DNA in Trypanosoma cruzi: Its use in a highsensitivity parasite detection assay. Proceedings of the National Academy of Sciences, USA 81, 3356–60.CrossRefGoogle Scholar
Gray, A. R., (1972). Variable agglutinogenic antigens of Trypanosoma gambiense and their distribution among isolates of the trypanosome collected in different places in Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene 66, 263–84.CrossRefGoogle ScholarPubMed
Hattori, M., & Sakaki, Y., (1986). Dideoxy sequencing method using denatured plasmid templates. Analytical Biochemistry 152, 232–8.CrossRefGoogle ScholarPubMed
Herbert, W. J., & Lumsden, W. H. R., (1976). Trypanosoma brucei: A rapid ‘matching’method for estimating the host's parasitemia. Experimental Parasitology 40, 427–31.CrossRefGoogle ScholarPubMed
Ilrad Reports (1988). New tools for trypanosomiasis field studies. ILRAD Reports 6, 18.Google Scholar
Kogan, S. C., Doherty, M., & Gitschier, J., (1987). All improved method for prenatal diagnosis of genetic diseases by analysis of amplified DNA sequences. New England Journal of Medicine 317, 985–90.CrossRefGoogle ScholarPubMed
Kukla, B. A., Majiwa, P. A. O., Young, J. R., Moloo, S. K., & Ole-Moiyoi, O., (1987). Use of species-specific DNA probes for detection and identification of trypanosome infection in tsetse flies. Parasitology 95, 1–16.CrossRefGoogle ScholarPubMed
Kwok, S., Mack, D. H., Mullis, K. B., Poiesz, B., Ehrlich, G., Blair, D., Friedman-Kien, A., & Sninsky, J. J., (1987). Identification of human immunodeficiency virus sequences by using in vitro enzymatic amplifcation and oligomer cleavage detection. Journal of Virology 61, 1690–4.CrossRefGoogle Scholar
Laurent, M., Van Assel, S., & Steinert, M., (1971). Kinetoplast DNA. A unique macromolecular structure of considerable size and mechanical resistance. Biochemical and Biophysical Research Communications 43, 278–84.CrossRefGoogle ScholarPubMed
Leary, J. J., Brigati, D. J., & Ward, D. C., (1983). Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: Bio-blots. Proceedings of the National Academy of Sciences, USA 80, 4045–9.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Hamers, R., Van Meirvenne, H., & Matthyssens, G., (1986). Evidence for genetic diversity in Trypanosoma (Nannomonas) congolense. Parasitology 93, 291304.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Masake, R. A., Nantulya, N. M., Hamers, R., & Matthyssens, G., (1985). Trypanosoma (Nannomonas) congolense: identification of two karyotypic groups. EMBO Journal 4, 3307–13.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., & Webster, P., (1987). A repetitive deoxyribonucleic acid sequence distinguishes Trypanosoma simiae from T. congolense. Parasitology 95, 543–58.CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsch, E. F., & Sambrook, J., (1982). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Publications.Google Scholar
Mullis, L. B., & Faloona, F. A., (1987). Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Methods in Enzymology 155, 335–50.CrossRefGoogle Scholar
Murphy, W. J., Brentano, S. T., Rice-Ficht, A. C., Dorfman, D., & Donelson, J. E., (1984). D N A rearrangements of variable surface antigen genes of trypanosomes. Journal of Protozoology 31, 6573.CrossRefGoogle Scholar
Ou, C. Y., Kwok, S., Mitchell, S. W., Mack, D. H., Sninsky, J. J., Krebs, J. W., Feorino, P., Warfield, D., & Schochetman, G., (1988). DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science 239, 295–7.CrossRefGoogle ScholarPubMed
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., & Erlich, H. A., (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–91.CrossRefGoogle ScholarPubMed
Sanger, F., Nicklen, S., & Coulson, A. R., (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74, 5463–7.CrossRefGoogle ScholarPubMed
Silva, L. H. P., & Nussenzweig, V., (1953). Sobre uma cepade Trypanosoma cruzi altamente virulenta para o camundongo branco. (On a strain of Trypanosoma cruzi highly virulent for white mice). Folia Clinical Biologie 20, 197207.Google Scholar
Sloof, P., Bos, J. L., Konings, A. F. J., Menke, H. H., Borst, P., Gutteridge, W. E., & Leon, W., (1983 a). Characterization of satellite DNA in Trypanosoma brucei and Trypanosoma cruzi. Journal of Molecular Biology 167, 121.CrossRefGoogle ScholarPubMed
Sloof, P., Menke, H. H., Caspers, M. P., & Borst, P., (1983 b). Size fractionation of Trypanosoma brucei DNA: localization of the 177-bp repeat satellite DNA and a variant surface glycoprotein gene in a minichromosomal DNA fraction. Nucleic Acids Research 11, 3889–901.CrossRefGoogle Scholar
Wells, J., Prospero, T., Jenni, L., & Lepage, R., (1987). DNA contents and molecular karotypes of hybrid Trypanosoma brucei. Molecular and Biochemical Parasitology 249, 103–16.CrossRefGoogle Scholar
Woodhouse, J. L., Fallon, R., Figueiredo, H., Longdale, J., & Malcolm, A. D., (1986). Alternative methods of gene diagnosis. In Human Genetic Diseases: a Practical Approach (ed. Davies, K. E.,), pp. 5164. Oxford: IRL Press.Google Scholar