Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T19:01:15.674Z Has data issue: false hasContentIssue false

Desiccation survival of parasitic nematodes

Published online by Cambridge University Press:  16 October 2009

R. N. Perry
Affiliation:
Entomology and Nematology Department, IACR-Rothamsted, Harpenden, Herts AL5 2JQ, UK

Summary

The ability of certain species of parasitic nematodes to survive desiccation for considerable periods is a fascinating example of adaptation to the demands of fluctuating environments that occasionally can become extreme and life threatening. Behavioural and morphological adaptations associated with desiccation survival serve primarily to reduce the rate of drying, either to prolong the time taken for the nematode's water content to reach lethal low levels or, in true anhydrobiotes, to enable the structural and biochemical changes required for long-term survival to take place. Examples of these adaptations are reviewed, together with information on the factors involved in rehydration that ensure successful exit from the dormant state. Information on desiccation survival is central to effective management and control options for parasitic nematodes. It is also required to assess the feasibility of enhancing the longevity of commercial formulations of entomopathogenic nematodes, both before and after application; current research and future prospects for enhancing survival of these bio-insecticides are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allan, G. S. & Wharton, D. A. (1990). Anhydrobiosis in the infective juveniles of Trichostrongylus colubriformis (Nematoda: Trichostrongylidae). International Journal for Parasitology 20, 183192.CrossRefGoogle ScholarPubMed
Barrett, J. (1982). Metabolic responses to anabiosis in the fourth stage juveniles of Ditylenchus dipsaci (Nematoda). Proceedings of the Royal Society of London B 216, 157177.Google Scholar
Barrett, J. (1991). Anhydrobiotic nematodes. Agricultural Zoology Reviews 4, 161176.Google Scholar
Barrett, J. & Butterworth, P. E. (1985). DNA stability in the anabiotic fourth-stage juveniles of Ditylenchus dipsaci (Nematoda). Annals of Applied Biology 106, 121124.CrossRefGoogle Scholar
Behm, C. A. (1997). The role of trehalose in the physiology of nematodes. International Journal for Parasitology 27, 215229.CrossRefGoogle ScholarPubMed
Bird, A. F. (1983). Growth and moulting in nematodes: changes in the dimensions and morphology of Rotylenchulus reniformis from start to finish of moulting. International Journal for Parasitology 13, 201206.CrossRefGoogle Scholar
Bird, A. F. & Buttrose, M. S. (1974). Ultrastructural changes in the nematode Anguina tritici associated with anhydrobiosis. Journal of Ultrastructural Research 48, 177189.CrossRefGoogle ScholarPubMed
Bird, A. F. & Soeffky, A. (1972). Changes in the ultrastructure of the gelatinous matrix of Meloidogyne javanica during dehydration. Journal of Nematology 4, 166169.Google ScholarPubMed
Bird, A. F. & Zuckerman, B. M. (1989). Studies on the surface coat (glycocalyx) of the dauer larva of Anguina agrostis. International Journal for Parasitology 19, 235247.CrossRefGoogle ScholarPubMed
Burnell, A. M. & Dowds, B. A. (1996). The genetic improvement of entomopathogenic nematodes and their symbiotic bacteria: phenotypic targets, genetic limitations and an assessment of possible hazards. Biocontrol Science and Technology 6, 435447.CrossRefGoogle Scholar
Campbell, L. R. & Gaugler, R. (1991). Role of the sheath in desiccation tolerance of two entomopathogenic nematodes. Nematologica 37, 324332.Google Scholar
Cossins, A. R. & Bowler, K. (1987). Temperature Biology of Animals. London & New York, Chapman & Hall.CrossRefGoogle Scholar
Crowe, J. H. & Crowe, L. M. (1999). Anhydrobiosis: the water replacement hypothesis. In Survival of Entomopathogenic Nematodes (ed. Glazer, P., Richardson, P., Boemare, N. & Coudert, F.), pp. 1525. Luxembourg, Office for Official Publications of the European Communities.Google Scholar
Crowe, J. H., Carpenter, J. F. & Crowe, L. M. (1998). The role of vitrification in anhydrobiosis. Annual Review of Physiology 60, 73103.CrossRefGoogle ScholarPubMed
Crowe, J. H., Hoekstra, F. & Crowe, L. M. (1992). Anhydrobiosis. Annual Review of Physiology 54, 579599.CrossRefGoogle ScholarPubMed
Crowe, J. H. & Madin, K. A. (1975). Anhydrobiosis in nematodes: evaporative water loss and survival. Journal of Experimental Zoology 193, 323334.CrossRefGoogle Scholar
Crowe, J. H., O'Dell, S. J. & Armstrong, D. A. (1979). Anhydrobiosis in nematodes: permeability during rehydration. Journal of Experimental Zoology 207, 431438.CrossRefGoogle Scholar
Demeure, Y. & Freckman, D. W. (1981). Recent advances in the study of anhydrobiotic nematodes. In Plant Parasitic Nematodes, Vol 3 (ed. Zuckerman, B. M., Mai, W. F. & Rohde, R. F.), pp. 205226. New York, Academic Press.CrossRefGoogle Scholar
Ellenby, C. (1946). Nature of the cyst wall of the potato-root eelworm Heterodera rostochiensis Wollenweber, and its permeability to water. Nature 157, 302.CrossRefGoogle ScholarPubMed
Ellenby, C. (1968 a). Desiccation survival in the plant parasitic nematodes, Heterodera rostochiensis Wollenweber and Ditylenchus dipsaci (Kuhn) Filipjev. Proceedings of the Royal Society of London B 169, 203213.Google Scholar
Ellenby, C. (1968 b). The survival of desiccated larvae of Heterodera rostochiensis and H. schachtii. Nematologica 14, 544548.CrossRefGoogle Scholar
Ellenby, C. (1968 c). Desiccation survival of the infective larva of Haemonchus contortus. Journal of Experimental Biology 49, 460475.CrossRefGoogle ScholarPubMed
Ellenby, C. (1969). Dormancy and survival in nematodes. Symposium of the Society for Experimental Biology 23, 8397.Google ScholarPubMed
Evans, A. A. F (1987). Diapause in nematodes as a survival strategy. In Vistas on Nematology (ed. Veech, J. A. & Dickson, D. W.), pp. 180187. Hyattsville, Society of Nematologists Inc.Google Scholar
Evans, A. A. F & Perry, R. N. (1976). Survival strategies in nematodes. In The Organisation of Nematodes (ed. Croll, N. A.), pp. 383424. London & New York, Academic Press.Google Scholar
Gaugler, R., Wilson, M. & Shearer, P. (1997). Field release and environmental fate of a transgenic entomopathogenic nematode. Biological Control 9, 7580.CrossRefGoogle Scholar
Gaur, H. S. & Perry, R. N. (1991 a). The biology and control of the plant parasitic nematode Rotylenckulus reniformis. Agricultural Zology Reviews 4, 177212.Google Scholar
Gaur, H. S. & Perry, R. N. (1991 b). The role of the moulted cuticles in the desiccation survival of adults of Rotylenckulus reniformis. Revue de Nématologie 14, 491496.Google Scholar
Glazer, I., Kozodoi, E., Hashmi, G. & Gaugler, R. (1996). Biological characteristics of the entomopathogenic nematode Heterorhabditis sp.: a heat tolerant isolate from Israel. Nematologica 42, 481492.CrossRefGoogle Scholar
Glazer, I., Richardson, P., Boemare, N. & Coudert, F. (Eds) (1999). Survival of Entomopathogenic Nematodes. Luxembourg: Official Publications of the European Communities.Google Scholar
Gresham, A. & Womersley, c. z. (1991). Modulation of catalase activity during the enforced induction of and revival from anhydrobiosis in nematodes. FASEB Journal 5A, 682.Google Scholar
Higa, L. M. & Womersley, c. z. (1993). New insights into the anhydrobiotic phenomenon: the effects of trehalose content and differential rates of evaporative water loss on the survival of Aphelenchus avenae. Journal of Experimental Zoology 267, 120129.CrossRefGoogle Scholar
Hooper, D. J. (1971). Stem eelworm ( Ditylenchus dipsaci), a seed and soil-borne pathogen of field beans ( Vicia faba). Plant Pathology 20, 2527.CrossRefGoogle Scholar
Jones, P. W., Tylka, G. L. & Perry, R. N. (1998). Hatching. In The Physiology and Biochemistry of Free-living and Plant-parasitic Nematodes (ed. Perry, R. N. & Wright, D. J.), pp. 181212. Wallingford, CAB International.Google Scholar
Keilin, D. (1959). The problem of anabiosis or latent life: history and current concepts. Proceeding of the Royal Society B 150, 149191.Google ScholarPubMed
Kenyon, c. (1997). Environmental factors and gene activities that influence life span. In C. elegans II (ed. Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.), pp. 791813. Cold Spring Harbor Laboratory Press, New York.Google Scholar
Larsen, M. N. & Roepstorff, A. (1999). Seasonal variation in development and survival of Ascaris suum and Trichuris suis eggs on pastures. Parasitology 119 , 209220.CrossRefGoogle ScholarPubMed
Lee, D. L. (1972). Penetration of mammalian skin by the infective larva of Nippostrongylus brasiliensis. Parasitology 65, 499505.CrossRefGoogle ScholarPubMed
Levine, H. & Slade, L. (1992). Another view of trehalose for drying and stabilizing biological material. BioPharm 5, 3640.Google Scholar
Loomis, S. H., O'Dell, S. J. & Crowe, J. H. (1979). Anhydrobiosis in nematodes: inhibition of the browning reaction of reducing sugars with dry protein. Journal of Experimental Zoology 208, 355360.CrossRefGoogle Scholar
Madin, K. A. C & Crowe, J. H. (1975). Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during rehydration. Journal of Experimental Zoology 193, 335342.CrossRefGoogle Scholar
Menti, H., Wright, D. J. & Perry, R. N. (1997). Desiccation survival of populations of the entomopathogenic nematodes Steinernema feltiae and Heterorhabditis megidis from Greece and the UK. Journal of Helminthology 71, 4146.CrossRefGoogle ScholarPubMed
Murrell, K. D., Graham, C. E. & Mcgreevy, M. (1983). Strongyloides ratti and Trichinella spiralis: net charge of epicuticle. Experimental Parasitology 55, 331339.CrossRefGoogle ScholarPubMed
O'Leary, S. A. & Burnell, A. M. (1997). The isolation of mutants of Heterorhabditis megidis (strain UK211) with increased desiccation tolerance. Fundamental and Applied Nematology 20, 197205.Google Scholar
O'Leary, S. A., Burnell, A. M. & Kusel, J. R. (1998). Biophysical properties of the surface of desiccation-tolerant mutants and parental strain of the entomopathogenic nematode Heterorhabditis megidis (strain UK211). Parasitology 117, 337345.CrossRefGoogle ScholarPubMed
Patel, M. N., Perry, R. N. & Wright, D. J. (1997). Desiccation survival and water contents of entomopathogenic nematodes, Steinernema spp. (Rhabditida: Steinernematidae). International Journal for Parasitology 27, 6170.CrossRefGoogle ScholarPubMed
Perry, R. N. (1977 a). Desiccation survival of larval and adult stages of the plant parasitic nematodes Ditylenchus dipsaci and D. myceliophagus. Parasitology 74, 139148.CrossRefGoogle Scholar
Perry, R. N. (1977 b). The water dynamics of stages of Ditylenchus dipsaci and D. myceliophagus during desiccation and rehydration. Parasitology 75, 4570.CrossRefGoogle Scholar
Perry, R. N. (1977 c). The effect of previous desiccation on the ability of 4th-stage larvae of Ditylenchus dipsaci to control rate of water loss and to survive drying. Parasitology 75, 215231.CrossRefGoogle Scholar
Perry, R. N. (1983). The effect of potato root diffusate on the desiccation survival of unhatched Globodera rostochiensis. Revue de Nématologie 6, 99102.Google Scholar
Perry, R. N. (1989). Dormancy and hatching of nematodes. Parasitology Today 5, 377383.CrossRefGoogle Scholar
Perry, R. N., Clarke, A. J. & Hennessy, J. (1980). The influence of osmotic pressure on the hatching of Heterodera schachtii. Revue de Nématologie 3, 39.Google Scholar
Precht, H. (1958). Concepts of the temperature adaptation of unchanging reaction systems of coldblooded animals. In Physiological Adaptation (ed. Prosser, C. L.), pp. 351376. Washington, American Association for the Advancement of Science.Google Scholar
Preston, C. M. & Bird, A. F. (1987). Physiological and morphological changes associated with recovery from anabiosis in the dauer larva of the nematode Anguina agrostis. Parasitology 44, 125133.CrossRefGoogle Scholar
Riddle, D. L. & Albert, p. s. (1997). Genetic and environmental regulation of dauer larva development. In C. elegans II (ed. Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.), pp. 739768. Cold Spring Harbor Laboratory Press, New York.Google ScholarPubMed
Robinson, A. F., Orr, c. c. & Heintz, c. E. (1984). Some factors affecting survival of desiccation by infective juveniles of Orrina phyllobia. Journal of Nematology 16, 8691.Google ScholarPubMed
Roepstorff, A. (1997). Helminth surveillance as a prerequisite for anthelmintic treatment in intensive sow herds. Veterinary Parasitology 73, 139151.CrossRefGoogle ScholarPubMed
Ssner, J. (1973). Anpassung wandernder Wurzelnematoden an Austrocknung im Boden. Nematologica 19, 366378.Google Scholar
Rössner, J. & Perry, R. N. (1975). Water loss and associated surface changes after desiccation in Rotylenchus robustus. Nematologica 21, 438442.CrossRefGoogle Scholar
Solomon, A., Paperna, I. & Glazer, I. (1999). Physiological and behavioural adaptation of Steinernema feltiae to desiccation stress. In Survival of Entomopathogenic Nematodes (ed. Glazer, P., Richardson, P., Boemare, N. & Coudert, F.), pp. 8398. Luxembourg, Office for Official Publications of the European Communities.Google Scholar
Stirling, G. R. (1991). Biological Control of Plant Parasitic Nematodes. Wallingford, CAB International.Google Scholar
Timper, P., Kaya, H. K. & Jaffee, B. A. (1991). Survival of entomogenous nematodes in soil infested with the nematode-parasitic fungus Hirsutella rhossiliensis (Deuteromycotina: Hyphomycetes). Biological Control 1, 4250.CrossRefGoogle Scholar
Vellai, T., Molnár, A., Lakatos, L., Banfalvi, Z., Fodor, A. & SÁRinger, G. (1999). Transgenic nematodes carrying a cloned stress resistance gene from yeast. In Survival of Entomopathogenic Nematodes (ed. Glazer, P., Richardson, P., Boemare, N. & Coudert, F.), pp. 105119. Luxembourg, Office for Official Publications of the European Communities.Google Scholar
Viney, M. (1996). A genetic analysis of reproduction in Strongyloides ratti. Parasitology 109, 511515.CrossRefGoogle Scholar
Waller, P. J. (1971). Structural differences in the egg envelope of Haemonchus contortus and Trichostrongylus colubriformis (Nematoda: Trichostrongylidae). Parasitology 62, 157160.CrossRefGoogle ScholarPubMed
Waller, P. J. & Donald, A. D. (1970). The response to desiccation of eggs of Trichostrongylus colubriformis and Haemonchus contortus (Nematoda: Trichostrongylidae). Parasitology 61, 195204.CrossRefGoogle ScholarPubMed
Wharton, D. A. (1979). Ascaris lumbricoides: water loss during desiccation of embryonating eggs. Experimental Parasitology 48, 398406.CrossRefGoogle Scholar
Wharton, D. A. (1980). Studies on the function of the oxyurid egg-shell. Parasitology 81, 103113.CrossRefGoogle Scholar
Wharton, D. A. (1981). The initiation of coiling behaviour prior to desiccation in the infective larvae of Trichostrongylus colubriformis. International Journal for Parasitology 11, 353357.CrossRefGoogle ScholarPubMed
Wharton, D. A. (1996). Water loss and morphological changes during desiccation of the anhydrobiotic nematode Ditylenchus dipsaci. The Journal of Experimental Biology 199, 10851093.CrossRefGoogle ScholarPubMed
Wharton, D. A. & Aalders, o. (1999). Desiccation stress and recovery in the anhydrobiotic nematode Ditylenchus dipsaci (Nematoda: Anguinidae). European Journal of Entomology 96, 199203.Google Scholar
Wharton, D. A. & Barrett, J. (1985). Ultrastructural changes during recovery from anabiosis in the plant parasitic nematode, Ditylenchus. Tissue and Cell 17, 7996.CrossRefGoogle ScholarPubMed
Wharton, D. A., Barrett, J. & Perry, R. N. (1985). Water uptake and morphological changes during recovery from anabiosis in the plant parasitic nematode, Ditylenchus dipsaci. Journal of Zoology 206, 391402.CrossRefGoogle Scholar
Wharton, D. A. & Lemmon, J. (1998). Ultrastructural changes during desiccation of the anhydrobiotic nematode Ditylenchus dipsaci. Tissue and Cell 30, 312323.CrossRefGoogle ScholarPubMed
Wharton, D. A., Preston, C. M., Barrett, J. & Perry, R. N. (1988). Changes in cuticular permeability associated with recovery from anhydrobiosis in the plant parasitic nematode, Ditylenchus dipsaci. Parasitology 97, 317330.Google Scholar
Womersley, c. (1978). A comparison of the rate of drying of four nematode species using a liquid paraffin technique. Annals of Applied Biology 90, 401405.CrossRefGoogle Scholar
Womersley, c. (1981). The effect of dehydration and rehydration on salt loss in the second-stage larvae of Anguina tritici. Parasitology 82, 411419.CrossRefGoogle Scholar
Womersley, C. (1987). A reevaluation of strategies employed by nematode anhydrobiotes in relation to their natural environment. In Vistas on Nematology (ed. Veech, J. A. & Dickson, D. W.), pp. 165173. Hyattsville, Society of Nematologists Inc.Google Scholar
Womersley, C. Z. (1990). Dehydration survival and anhydrobiotic survival. In Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. & Kaya, H. K.), pp. 117137. Boca Raton, CRC Press.Google Scholar
Womersley, C. Z. & Ching, c. (1989). Natural dehydration regimes as a prerequisite for the successful induction of anhydrobiosis in the nematode Rotylenchulus reniformis. Journal of Experimental Biology 143, 359372CrossRefGoogle ScholarPubMed
Womersley, C. Z. & Higa, L. M. (1998). Trehalose: its role in the anhydrobiotic survival of Ditylenchus myceliophagus. Nematologica 44, 269291.Google Scholar
Womersley, C. & Smith, L. (1981). Anhydrobiosis in nematodes. 1. The role of glycerol, myoinositol and trehalose during desiccation. Comparative Biochemistry and Physiology 70B, 579586.Google Scholar
Womersley, C., Thompson, S. N. & Smith, L. (1982). Anhydrobiosis in nematodes. 2. Carbohydrate and lipid analysis in undesiccated and desiccated nematodes. Journal of Nematology 14, 145153.Google ScholarPubMed
Womersley, C. Z., Wharton, D. A. & Higa, L. M. (1998). Survival biology. In The Physiology and Biochemistry of Free-living and Plant-parasitic Nematodes (ed. Perry, R. N. & Wright, D. J.), pp. 271302. Wallingford, CAB International.Google Scholar