Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T23:06:27.732Z Has data issue: false hasContentIssue false

Description of inflammation and cytokine profile at the inoculation site and in heart tissue of mice re-infected with Trypanosoma cruzi vector derived-metacyclic trypomastigotes

Published online by Cambridge University Press:  06 January 2005

L. GÓMEZ-GARCÍA
Affiliation:
Laboratorio Inmunoparasitología, Instituto Nacional Cardiología “Ignacio Chávez”, México DF
R. ALEJANDRE-AGUILAR
Affiliation:
Departamento Parasitología, Escuela Nacional Ciencias Biológicas, IPN, México DF
A. ARANDA-FRAUSTRO
Affiliation:
Laboratorio Inmunoparasitología, Instituto Nacional Cardiología “Ignacio Chávez”, México DF
R. LOPEZ
Affiliation:
Centro de Investigación en Enfermedades Tropicales, Universidad Autónoma de Campeche, México
V. M. MONTEÓN
Affiliation:
Centro de Investigación en Enfermedades Tropicales, Universidad Autónoma de Campeche, México

Abstract

We studied the role of Trypanosoma cruzi reinfection in regard to inflammatory and cytokine response at the inoculation site, lymph node and heart. We reinfected Balb/c mice intradermically into the hind foot-pad with natural infective metacyclic trypomastigotes. They were followed from 24 h to 30 days after the last reinfection. At the inoculation site 24 h after the last re-infection, the infiltrating inflammatory cells increased dramatically with respect to baseline inflammation, reaching maximum infiltrates for the third day. In contrast, parasite DNA was undetectable 24 h after inoculation, despite poor cytokine induction, only IFN-gamma, IL-12 and TGF-β were noticeable on days 7 and 15, whereas in the lymph nodes draining the inoculation site positive expression of IL-2, IL-4, IL-12 and TGF-beta were found to be induced as soon as 24 h after re-entry of parasite. In the heart, the inflammatory response increased immediately 24 h after re-entry of parasites, reaching its maximum on the 7th day and returning to baseline on day 30. In conclusion, although the inflammatory response is triggered in both compartments by re-entry of parasites, the inflammatory process returns almost to baseline after 30 days, leaving a persistent low-grade inflammation.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ALIBERTI, J. C., CARDOSO, M. A., MARTINS, G. A., GAZZINELLI, R. T., VEIRA, L. Q. & SILVA, J. S. ( 1996). Interleukin-12 mediates resistance to Trypanosoma cruzi in mice and is produced by murine macrophages in response to live trypomastigotes. Infection and Immunity 64, 19611967.Google Scholar
BRUMPT, E. ( 1912). Penétration do Schizotrypanom cruzi a travers la muqueuse oculaire saine. Bulletin Society Pathology, Exotic 5, 723724.Google Scholar
BUSTAMENTE, J., RIVAROLA, H., FERNÁNDEZ, A., ENDERS, J., FRETES, R., PALMA, J. & PAGLINI-OLIVA, P. ( 2002). Trypanosoma cruzi reinfections in mice determine the severity of cardiac damage. International Journal for Parasitology 32, 889896.CrossRefGoogle Scholar
BRENER, Z. ( 1962). Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Revista do Instituto Medicina Tropical Sao Paulo 4, 389396.Google Scholar
CABRINE-SANTOS, M., SILVA, E. & CHAPADEIRO, E. ( 2001). Trypanosoma cruzi: characterization of reinfection and search for tissue tropism in hamsters (Mesucricetus auratus). Experimental Parasitology 99, 160167.CrossRefGoogle Scholar
CAMARGO, M. M., ANDRADE, A. C., ALMEIDA, I. C., TRAVASSOS, L. R. & GAZZINELLI, R. T. ( 1997). Glycoconjugates isolated from Trypanosoma cruzi but not from Leishmania species membranes trigger nitric oxide synthesis as well as microbicidal activity in IFN-γ-primed macrophages. Journal of Immunology 159, 61316139.Google Scholar
CARDILLO, F., VOLTARELLI, J. & REED, S. ( 1996). Regulation of Trypanosoma cruzi infection in mice by gamma interferon and interleukin 10: role of NK cells. Infection and Immunity 64, 128134.Google Scholar
DE DIEGO, J., PUNZÓN, C., DUARTE, M. & FRESNO, M. ( 1997). Alteration of macrophage function by Trypanosoma cruzi membrane mucin. Journal of Immunology 159, 49834989.Google Scholar
DIAS, E. ( 1934). Estudos sobre o Schizotrypanum cruzi. Memorias do Instituto Oswaldo Cruz 28, 1111.CrossRefGoogle Scholar
FREIRE DE LIMA, C., NUNES, M., CORTE-REAL, S., SOARES, M., PREVIATO, J., MENDOZA-PREVIATO, L. & DOS REIS, G. ( 1998). Proapoptotic activity of a Trypanosoma cruzi ceramide-containing glycolipid turned on in host macrophages by IFN-gamma. Journal of Immunology 161, 49094916.Google Scholar
KRETTLI, A. V. ( 1984). Protective antibodies in Trypanosoma cruzi infections: detection, functional activity and possible mechanisms of trypomastigote killing in vivo and in vitro Memorias do Instituto Oswaldo Cruz 79, 5965.Google Scholar
KRETTLI, A. V. & LIMA-PEREIRA, F. E. ( 1981). Immunosuppression in protozoal infections. In Biochemistry and Physiology of Protozoa, Vol. 4, (ed. Lavandowsky, M. & Hutner, A.) pp. 431461. Academic Press, New York.
LAURIA-PIRES, L. & TEIXEIRA, A. R. ( 1997). Superinfections with genetically characterized Trypanosoma cruzi clones did not aggravate morbidity and mortality in Balb/ mice. Journal of Parasitology 83, 819824.CrossRefGoogle Scholar
LOPES, M., DE VEIGA, V., SANTOS, A., FONSECA, M. E. & DOS REIS, G. ( 1995). Activation-induced CD4+ T cell death by apoptosis in experimental Chagas' disease. Journal of Immunology 154, 744752.Google Scholar
MACHADO, E., FERNANDES, A., MURTA, F., VITOR, R., DEOLINO, J., JUNIOR, C., PINHEIRO, S., REIS, E., ADAD, S., ROMANHA, A. & PINTO-DÍAS, J. ( 2001). A study of experimental reinfection by Trypanosoma cruzi in dogs. American Journal of Tropical Medicine and Hygiene 65, 958965.CrossRefGoogle Scholar
MASUPUST, D., VEZYS, V., MARZO, A. L. & LEFRANCOIS, L. ( 2001). Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 24132417.CrossRefGoogle Scholar
MONTEÓN, V. M. ( 1994). Cinética de la inflamación y la parasitosis causada por una cepa mexicana de Trypanosoma cruzi en un modelo murino. Ph.D. thesis. Escuela Nacioanal Ciencias Biológicas, IPN. México.
MONTEÓN, V. M., REYES, P. A. & ROSALES-ENCINA, J. L. ( 1994). Detección de Trypanosoma cruzi en muestras experimentales por el método de reacción en cadena de la ADN polimerasa. Archivos Instituto Cardiologia (México) 64, 135143.Google Scholar
MONTEÓN, V. M., FURUZAWA-CARBALLEDA, J., ALEJANDRE-AGUILAR, R., ARANDA-FRAUSTRO, A., ROSALES-ENCINA, J. L. & REYES, P. A. ( 1996). American trypanosomosis: In situ and generalized features of parasitism and inflammation kinetics in a murine model. Experimental Parasitology 83, 267274.CrossRefGoogle Scholar
NASCIMIENTO, F. H. F. & ABRAHANSOHN, P. A. ( 1987). The inoculation site of Trypanosoma cruzi tripomastigotes in the dermis of normal, immune or infected mice I. – The inflammatory reaction. Memorias do Instituto Oswaldo Cruz 82S, 115.Google Scholar
NUNES, M., ANDRADE, R., LOPES, M. & DOS REIS, G. ( 1998). Activation-induce T cell death exacerbates Trypanosoma cruzi replication in macrophages cocultured with CD4+T lymphocytes from infected hosts. Journal of Immunology 160, 13131319.Google Scholar
PETRY, K. & EISEN, H. ( 1989). Chagas disease: a model for the study of autoimmune diseases. Parasitology Today 5, 111114.CrossRefGoogle Scholar
REINHARDT, R. L., KHORUTS, A., MERICA, R., ZELL, T. & JENKINS, M. K. ( 2001). Visualizing the generation of memory CD4 cells in the whole body. Nature, London 410, 101105.CrossRefGoogle Scholar
RIVELLI, S., BERRA, H., VALENTI, J., MORENO, H., BERNASCONI, M., POLI, H. & MORINI, J. ( 1990). Efecto de la reinfection sobre la evolución de ratas infectadas con Trypanosma cruzi. Revista Instituto Medicina Tropical Sao Paulo 32, 260268.CrossRefGoogle Scholar
ROMAÑA, C. ( 1943). Contribuïçao ao conhecimiento da patogenia da tripanosomase Americana. Memorias do Instituto Oswaldo Cruz 39, 253264.CrossRefGoogle Scholar
ROTTENBERG, M., CARDONI, R., ANDERSSON, R., SEGURA, E. & ORN, A. ( 1988). Role of T helper/inducer cells as well as natural killer cells in resistance to Trypanosoma cruzi infection. Scandinavian Journal of Immunology 28, 573584.CrossRefGoogle Scholar
SILVA, J. S., MORRISSEY, P. J., GRABSTEIN, K. H., MOHLER, K. M., ANDERSON, D. & REEDS, G. ( 1992). Interlerleukin 10 and interferon gamma regulation of experimental Trypanosoma cruzi infection. Journal of Experimental Medicine 175, 169178.CrossRefGoogle Scholar
SOARES, V. A. & MARSDEN, P. D. ( 1986). Penetração do Trypanosoma cruzi através do ponto da picada de triatomíneos. Revista da Sociedad Brasileira do Medicina Tropical 19, 165166.CrossRefGoogle Scholar
SCHUSTER, J. P. & SCHAUB, G. A. ( 2000). Trypanosoma cruzi: skin-penetration of kinects of vector-derived metacyclic trypomastigotes. International Journal for Parasitology 30, 14751479.CrossRefGoogle Scholar
SPRENT, J. & MILLER, J. H. ( 1976). Fate of H2-activated T lymphocytes in syngeneic hosts: II Residence in recirculating lymphocyte pool and capacity to migrate to allografts. Cellular Immunology 21, 303313.CrossRefGoogle Scholar