Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T17:53:32.399Z Has data issue: false hasContentIssue false

Dengue and chikungunya: modelling the expansion of mosquito-borne viruses into naïve populations

Published online by Cambridge University Press:  05 April 2016

HELEN J. WEARING*
Affiliation:
Department of Biology, University of New Mexico, MSC03 2020, Albuquerque, New Mexico 87131-0001, USA Department of Mathematics & Statistics, University of New Mexico, MSC01 1115, Albuquerque, New Mexico 87131-0001, USA
MICHAEL A. ROBERT
Affiliation:
Department of Biology, University of New Mexico, MSC03 2020, Albuquerque, New Mexico 87131-0001, USA Department of Mathematics & Statistics, University of New Mexico, MSC01 1115, Albuquerque, New Mexico 87131-0001, USA
REBECCA C. CHRISTOFFERSON
Affiliation:
Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
*
*Corresponding author: Department of Biology, University of New Mexico, MSC03 2020, Albuquerque, New Mexico 87131-0001, USA. E-mail: [email protected]

Summary

With the recent global spread of a number of mosquito-borne viruses, there is an urgent need to understand the factors that contribute to the ability of viruses to expand into naïve populations. Using dengue and chikungunya viruses as case studies, we detail the necessary components of the expansion process: presence of the mosquito vector; introduction of the virus; and suitable conditions for local transmission. For each component we review the existing modelling approaches that have been used to understand recent emergence events or to assess the risk of future expansions. We identify gaps in our knowledge that are related to each of the distinct aspects of the human-mosquito transmission cycle: mosquito ecology; human–mosquito contact; mosquito–virus interactions; and human–virus interactions. Bridging these gaps poses challenges to both modellers and empiricists, but only through further integration of models and data will we improve our ability to better understand, and ultimately control, several infectious diseases that exert a significant burden on human health.

Type
Special Issue Review
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andraud, M., Hens, N., Marais, C. and Beutels, P. (2012). Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. PLoS ONE 7, e49085.Google Scholar
Appassakij, H., Khuntikij, P., Kemapunmanus, M., Wutthanarungsan, R. and Silpapojakul, K. (2013). Viremic profiles in asymptomatic and symptomatic chikungunya fever: a blood transfusion threat? Transfusion 53, 25672574.CrossRefGoogle ScholarPubMed
Auguste, A. J., Liria, J., Forrester, N. L., Giambalvo, D., Moncada, M., Long, K. C., Morón, D., de Manzione, N., Tesh, R. B., Halsey, E. S., Kochel, T. J., Hernandez, R., Navarro, J.-C. and Weaver, S. C. (2015). Evolutionary and ecological characterization of Mayaro virus strains isolated during an outbreak, Venezuela, 2010. Emerging Infectious Diseases 21, 17421750.CrossRefGoogle ScholarPubMed
Bacaër, N. (2007). Approximation of the basic reproduction number R 0 for vector-borne diseases with a periodic vector population. Bulletin of Mathematical Biology 69, 10671091.CrossRefGoogle Scholar
Bannister-Tyrrell, M., Williams, C., Ritchie, S. A., Rau, G., Lindesay, J., Mercer, G. and Harley, D. (2013). Weather-driven variation in dengue activity in Australia examined using a process-based modeling approach. American Journal of Tropical Medicine and Hygiene 88, 6572.Google Scholar
Benedict, M. Q., Levine, R. S., Hawley, W. A. and Lounibos, L. P. (2007). Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus . Vector-Borne and Zoonotic Diseases 7, 7685.CrossRefGoogle ScholarPubMed
Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., Wint, G. R. W., Simmons, C. P., Scott, T. W., Farrar, J. J. and Hay, S. I. (2013). The global distribution and burden of dengue. Nature 496, 504507.CrossRefGoogle ScholarPubMed
Boëlle, P. Y., Thomas, G., Vergu, E., Renault, P., Valleron, A. J. and Flahault, A. (2008). Investigating transmission in a two-wave epidemic of chikungunya fever, Réunion Island. Vector-Borne and Zoonotic Diseases 8, 207218.Google Scholar
Bouzid, M., Colon-Gonzalez, F. J., Lung, T., Lake, I. R. and Hunter, P. R. (2014). Climate change and the emergence of vector-borne diseases in Europe: case study of dengue fever. BMC Public Health 14, 781.Google Scholar
Bowman, L. R., Runge-Ranzinger, S. and McCall, P. J. (2014). Assessing the relationship between vector indices and dengue transmission: a systematic review of the evidence. PLoS Neglected Tropical Diseases 8, e2848.Google Scholar
Brady, O. J., Gething, P. W., Bhatt, S., Messina, J. P., Brownstein, J. S., Hoen, A. G., Moyes, C. L., Farlow, A. W., Scott, T. W. and Hay, S. I. (2012). Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Neglected Tropical Diseases 6, e1760.CrossRefGoogle ScholarPubMed
Brady, O. J., Golding, N., Pigott, D. M., Kraemer, M. U. G., Messina, J. P., Reiner, R. C., Scott, T. W., Smith, D. L., Gething, P. W. and Hay, S. I. (2014). Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites & Vectors 7, 338.Google Scholar
Brunkard, J. M., Robles López, J. L., Ramirez, J., Cifuentes, E., Rothenberg, S. J., Hunsperger, E. A., Moore, C. G., Brussolo, R. M., Villarreal, N. A. and Haddad, B. M. (2007). Dengue fever seroprevalence and risk factors, Texas-Mexico border, 2004. Emerging Infectious Diseases 13, 14771483.CrossRefGoogle ScholarPubMed
Buathong, R., Hermann, L., Thaisomboonsuk, B., Rutvisuttinunt, W., Klungthong, C., Chinnawirotpisan, P., Manasatienkij, W., Nisalak, A., Fernandez, S., Yoon, I. K., Akrasewi, P. and Plipat, T. (2015). Detection of Zika virus infection in Thailand, 2012–2014. The American Journal of Tropical Medicine and Hygiene 93, 380383.CrossRefGoogle ScholarPubMed
Caminade, C., Medlock, J. M., Ducheyne, E., McIntyre, K. M., Leach, S., Baylis, M. and Morse, A. P. (2012). Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. Journal of the Royal Society Interface 9, 27082717.Google Scholar
Campbell, L. P., Luther, C., Moo-Llanes, D., Ramsey, J. M., Danis-Lozano, R. and Peterson, A. T. (2015). Climate change influences on global distributions of dengue and chikungunya virus vectors. Philosophical Transactions of the Royal Society B-Biological Sciences 370, 20140135.Google Scholar
Campos, G. S., Bandeira, A. C. and Sardi, S. I. (2015). Zika virus outbreak, Bahia, Brazil. Emerging Infectious Diseases 21, 18851886.Google Scholar
Carbajo, A. E. and Vezzani, D. (2015). Waiting for chikungunya fever in Argentina: spatio-temporal risk maps. Memórias Do Instituto Oswaldo Cruz 110, 259262.CrossRefGoogle ScholarPubMed
Cardoso-Leite, R., Vilarinho, A. C., Novaes, M. C., Tonetto, A. F., Vilardi, G. C. and Guillermo-Ferreira, R. (2014). Recent and future environmental suitability to dengue fever in Brazil using species distribution model. Transactions of the Royal Society of Tropical Medicine and Hygiene 108, 99104.Google Scholar
Carrington, L. B. and Simmons, C. P. (2014). Human to mosquito transmission of dengue viruses. Frontiers in Immunology 5, 290.Google Scholar
Carvalho, R. G., Lourenço-de Oliveira, R. and Braga, I. A. (2014). Updating the geographical distribution and frequency of Aedes albopictus in Brazil with remarks regarding its range in the Americas. Memórias Do Instituto Oswaldo Cruz 109, 787796.CrossRefGoogle ScholarPubMed
Casas Martínez, M., Orozco Bonilla, A., Muñoz Reyes, M., Ulloa García, A., Bond, J. G., Valle Mora, J., Weber, M. and Rojas, J. C. (2013). A new tent trap for monitoring the daily activity of Aedes aegypti and Aedes albopictus . Journal of Vector Ecology 38, 277288.CrossRefGoogle ScholarPubMed
Cash, R. A. and Narasimhan, V. (2000). Impediments to global surveillance of infectious diseases: consequences of open reporting in a global economy. Bulletin of the World Health Organization 78, 13581367.Google Scholar
Cauchemez, S., Ledrans, M., Poletto, C., Quenel, P., de Valk, H., Colizza, V. and Boëlle, P. Y. (2014). Local and regional spread of chikungunya fever in the Americas. Eurosurveillance 19, 1523.CrossRefGoogle ScholarPubMed
CDC ArboNET, (2015). Diseasemaps Dynamic Map Application. http://diseasemaps.usgs.gov/mapviewer/.Google Scholar
Chao, D. L., Longini, I. M. and Halloran, M. E. (2013). The effects of vector movement and distribution in a mathematical model of dengue transmission. PLoS ONE 8, e76044.CrossRefGoogle Scholar
Chaves, L. F., Morrison, A. C., Kitron, U. D. and Scott, T. W. (2012). Nonlinear impacts of climatic variability on the density-dependent regulation of an insect vector of disease. Global Change Biology 18, 457468.CrossRefGoogle Scholar
Chaves, L. F., Scott, T. W., Morrison, A. C. and Takada, T. (2014). Hot temperatures can force delayed mosquito outbreaks via sequential changes in Aedes aegypti demographic parameters in autocorrelated environments. Acta Tropica 129, 1524.Google Scholar
Christofferson, R. C., Chisenhall, D. M., Wearing, H. J. and Mores, C. N. (2014 a). Chikungunya viral fitness measures within the vector and subsequent transmission potential. PLoS ONE 9, e110538.CrossRefGoogle ScholarPubMed
Christofferson, R. C., Mores, C. N. and Wearing, H. J. (2014 b). Characterizing the likelihood of dengue emergence and detection in naïve populations. Parasites & Vectors 7, 282.CrossRefGoogle ScholarPubMed
Chusri, S., Siripaitoon, P., Silpapojakul, K., Hortiwakul, T., Charernmak, B., Chinnawirotpisan, P., Nisalak, A., Thaisomboonsuk, B., Klungthong, C., Gibbons, R. V. and Jarman, R. G. (2014). Kinetics of chikungunya infections during an outbreak in Southern Thailand, 2008–2009. The American Journal of Tropical Medicine and Hygiene 90, 410417.CrossRefGoogle ScholarPubMed
Cummins, B., Cortez, R., Foppa, I. M., Walbeck, J. and Hyman, J. M. (2012). A spatial model of mosquito host-seeking behavior. PLoS Computational Biology 8, e1002500.CrossRefGoogle ScholarPubMed
de la Cruz-Hernández, S. I., Flores-Aguilar, H., González-Mateos, S., López-Martinez, I., Alpuche-Aranda, C., Ludert, J. E. and del Angel, R. M. (2013). Determination of viremia and concentration of circulating nonstructural protein 1 in patients infected with dengue virus in Mexico. American Journal of Tropical Medicine and Hygiene 88, 446454.Google Scholar
Delatte, H., Desvars, A., Bouétard, A., Bord, S., Gimonneau, G., Vourc'h, G. and Fontenille, D. (2010). Blood-feeding behavior of Aedes albopictus, a vector of chikungunya on La Réunion. Vector Borne and Zoonotic Diseases (Larchmont, N.Y.) 10, 249258.Google Scholar
Delisle, E., Rousseau, C., Broche, B., Leparc-Goffart, I., L'Ambert, G., Cochet, A., Prat, C., Foulongne, V., Ferre, J. B., Catelinois, O., Flusin, O., Tchernonog, E., Moussion, I. E., Wiegandt, A., Septfons, A., Mendy, A., Moyano, M. B., Laporte, L., Maurel, J., Jourdain, F., Reynes, J., Paty, M. C. and Golliot, F. (2015). Chikungunya outbreak in Montpellier, France, September to October 2014. Eurosurveillance 20, 21108.CrossRefGoogle ScholarPubMed
Descloux, E., Mangeas, M., Menkes, C. E., Lengaigne, M., Leroy, A., Tehei, T., Guillaumot, L., Teurlai, M., Gourinat, A. C., Benzler, J., Pfannstiel, A., Grangeon, J. P., Degallier, N. and De Lamballerie, X. (2012). Climate-based models for understanding and forecasting dengue epidemics. Plos Neglected Tropical Diseases 6, e1470.CrossRefGoogle ScholarPubMed
Dieng, H., Saifur, R. G. M., Hassan, A. A., Salmah, M. R. C., Boots, M., Satho, T., Jaal, Z. and AbuBakar, S. (2010). Indoor-breeding of Aedes albopictus in northern peninsular Malaysia and its potential epidemiological implications. PloS ONE 5, e11790.Google Scholar
Dommar, C. J., Lowe, R., Robinson, M. and Rodo, X. (2014). An agent-based model driven by tropical rainfall to understand the spatio-temporal heterogeneity of a chikungunya outbreak. Acta Tropica 129, 6173.Google Scholar
Dubrulle, M., Mousson, L., Moutailler, S., Vazeille, M. and Failloux, A. B. (2009). Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after oral infection. PLoS ONE 4, e5895.CrossRefGoogle Scholar
Dufourd, C. and Dumont, Y. (2013). Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control. Computers &. Mathematics with Applications. 66, 16951715.CrossRefGoogle Scholar
Dumont, Y., Chiroleu, F. and Domerg, C. (2008). On a temporal model for the chikungunya disease: modeling, theory and numerics. Mathematical Biosciences 213, 8091.CrossRefGoogle ScholarPubMed
Effler, P. V., Pang, L., Kitsutani, P., Vorndam, V., Nakata, M., Ayers, T., Elm, J., Tom, T., Reiter, P., Rigau-Perez, J. G., Hayes, J. M., Mills, K., Napier, M., Clark, G. G., Gubler, D. J. and Hawaii Dengue Outbreak Investigation Team (2005). Dengue fever, Hawaii, 2001–2002. Emerging Infectious Diseases 11, 742749.Google Scholar
Elith, J. and Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40, 677697.Google Scholar
Faraji, A., Egizi, A., Fonseca, D. M., Unlu, I., Crepeau, T., Healy, S. P. and Gaugler, R. (2014). Comparative host feeding patterns of the Asian tiger mosquito, Aedes albopictus, in urban and suburban Northeastern USA and implications for disease transmission. PLoS Neglected Tropical Diseases 8, e3037.Google Scholar
Fine, P. E. M. (2003). The interval between successive cases of an infectious disease. American Journal of Epidemiology 158, 10391047.Google Scholar
Fischer, D., Thomas, S. M., Niemitz, F., Reineking, B. and Beierkuhnlein, C. (2011 a). Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions. Global and Planetary Change 78, 5464.CrossRefGoogle Scholar
Fischer, D., Thomas, S. M., Suk, J. E., Sudre, B., Hess, A., Tjaden, N. B., Beierkuhnlein, C. and Semenza, J. C. (2013). Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector's climatic suitability and virus’ temperature requirements. International Journal of Health Geographics 12, 51.Google Scholar
Fischer, D., Thomas, S. M., Neteler, M., Tjaden, N. B. and Beierkuhnlein, C. (2014). Climatic suitability of Aedes albopictus in Europe referring to climate change projections: comparison of mechanistic and correlative niche modelling approaches. Eurosurveillance 19, 3446.CrossRefGoogle ScholarPubMed
Fischer, S., Alem, I. S., De Majo, M. S., Campos, R. E. and Schweigmann, N. (2011 b). Cold season mortality and hatching behavior of Aedes aegypti L. (Diptera: Culicidae) eggs in Buenos Aires City, Argentina. Journal of Vector Ecology 36, 9499.CrossRefGoogle Scholar
Focks, D., Daniels, E., Haile, D. and Keesling, J. (1995). A simulation-model of the epidemiology of urban dengue fever – literature analysis, model development, preliminary validation, and samples of simulation results. American Journal of Tropical Medicine and Hygiene 53, 489506.CrossRefGoogle ScholarPubMed
Gardner, L. and Sarkar, S. (2013). A global airport-based risk model for the spread of dengue infection via the air transport network. Plos ONE 8, e72129.Google Scholar
Gjenero-Margan, I., Aleraj, B., Krajcar, D., Lesnikar, V., Klobučar, A., Pem-Novosel, I., Kurečić-Filipović, S., Komparak, S., Martić, R., Duričić, S., Betica-Radić, L., Okmadžić, J., Vilibić-Čavlek, T., Babić-Erceg, A., Turković, B., Avšić-Županc, T., Radić, I., Ljubić, M., Sarac, K., Benić, N. and Mlinarić-Galinović, G. (2011). Autochthonous dengue fever in Croatia, August-September 2010. Eurosurveillance 16, 19805.Google Scholar
Grandadam, M., Caro, V., Plumet, S., Thiberge, J. M., Souarés, Y., Failloux, A. B., Tolou, H. J., Budelot, M., Cosserat, D., Leparc-Goffart, I. and Després, P. (2011). Chikungunya virus, southeastern France. Emerging Infectious Diseases 17, 910913.CrossRefGoogle ScholarPubMed
Gubler, D. J. (1998 a). Dengue and dengue hemorrhagic fever. Clinical Microbiology Reviews 11, 480496.Google Scholar
Gubler, D. J. (1998 b). Resurgent vector-borne diseases as a global health problem. Emerging Infectious Diseases 4, 442450.CrossRefGoogle ScholarPubMed
Hawley, W. A. (1988). The biology of Aedes albopictus . Journal of the American Mosquito Control Association. Supplement 1, 139.Google Scholar
Huang, Z., Das, A., Qiu, Y. and Tatem, A. J. (2012). Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool. International Journal of Health Geographics 11, 33.Google Scholar
Johansson, M. A. (2015). Chikungunya on the move. Trends in Parasitology 31, 4345.Google Scholar
Johansson, M. A., Powers, A. M., Pesik, N., Cohen, N. J. and Staples, J. E. (2014). Nowcasting the spread of chikungunya virus in the Americas. Plos ONE 9, e104915.Google Scholar
Johnston, D., Viray, M., Ushiroda, J., Whelen, A. C., Sciulli, R., Gose, R., Lee, R., Honda, E., Park, S. Y. and Hawaii Dengue Response Team (2016). Notes from the field: outbreak of locally acquired cases of dengue fever Hawaii, 2015. Morbidity and Mortality Weekly Report 65, 3435.Google Scholar
Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L. and Daszak, P. (2008). Global trends in emerging infectious diseases. Nature 451, 990993.Google Scholar
Karl, S., Halder, N., Kelso, J. K., Ritchie, S. A. and Milne, G. J. (2014). A spatial simulation model for dengue virus infection in urban areas. BMC Infectious Diseases 14, 447.Google Scholar
Khormi, H. M. and Kumar, L. (2014). Climate change and the potential global distribution of Aedes aegypti: spatial modelling using geographical information system and CLIMEX. Geospatial Health 8, 405.Google Scholar
Kobayashi, M., Nihei, N. and Kurihara, T. (2002). Analysis of Northern distribution of Aedes albopictus (Diptera: Culicidae) in Japan by Geographical Information System. Journal of Medical Entomology 39, 411.Google Scholar
Kraemer, M. U., Sinka, M. E., Duda, K. A., Mylne, A. Q., Shearer, F. M., Barker, C. M., Moore, C. G., Carvalho, R. G., Coelho, G. E., Bortel, W. V., Hendrickx, G., Schaffner, F., Elyazar, I. R., Teng, H. J., Brady, O. J., Messina, J. P., Pigott, D. M., Scott, T. W., Smith, D. L., Wint, G. W., Golding, N. and Hay, S. I. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus . eLife 4, e08347.CrossRefGoogle ScholarPubMed
Leisnham, P. T., LaDeau, S. L. and Juliano, S. A. (2014). Spatial and temporal habitat segregation of mosquitoes in urban Florida. PLoS ONE 9, e91655.Google Scholar
Leparc-Goffart, I., Nougairede, A., Cassadou, S., Prat, C. and de Lamballerie, X. (2014). Chikungunya in the Americas. Lancet 383, 514.Google Scholar
Louis, V. R., Phalkey, R., Horstick, O., Ratanawong, P., Wilder-Smith, A., Tozan, Y. and Dambach, P. (2014). Modeling tools for dengue risk mapping – a systematic review. International Journal of Health Geographics 13, 50.Google Scholar
Lourenço, J. and Recker, M. (2014). The 2012 Madeira dengue outbreak: epidemiological determinants and future epidemic potential. PLoS Neglected Tropical Diseases 8, e3083.Google Scholar
Lowe, R., Barcellos, C., Coelho, C. A. S., Bailey, T. C., Coelho, G. E., Graham, R., Jupp, T., Ramalho, W. M., Carvalho, M. S., Stephenson, D. B. and Rodo, X. (2014). Dengue outlook for the World Cup in Brazil: an early warning model framework driven by real-time seasonal climate forecasts. Lancet Infectious Diseases 14, 619626.Google Scholar
Macdonald, G. (1952). The analysis of equilibrium in malaria. Tropical Diseases Bulletin 49, 813829.Google Scholar
Machado-Machado, E. A. (2012). Empirical mapping of suitability to dengue fever in Mexico using species distribution modeling. Applied Geography 33, 8293.Google Scholar
Mackenzie, J. S., Gubler, D. J. and Petersen, L. R. (2004). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nature Medicine 10, S98S109.CrossRefGoogle ScholarPubMed
Manore, C. A., Hickmann, K. S., Xu, S., Wearing, H. J. and Hyman, J. M. (2014). Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus . Journal of Theoretical Biology 356, 174191.CrossRefGoogle Scholar
Manore, C. A., Hickmann, K. S., Hyman, J. M., Foppa, I. M., Davis, J. K., Wesson, D. M. and Mores, C. N. (2015). A network-patch methodology for adapting agent-based models for directly transmitted disease to mosquito-borne disease. Journal of Biological Dynamics 9, 5272.Google Scholar
Marchand, E., Prat, C., Jeannin, C., Lafont, E., Bergmann, T., Flusin, O., Rizzi, J., Roux, N., Busso, V., Deniau, J., Noel, H., Vaillant, V., Leparc-Goffart, I., Six, C. and Paty, M. C. (2013). Autochthonous case of dengue in France, October 2013. Eurosurveillance 18, 20661.Google Scholar
Medlock, J. M., Avenell, D., Barrass, I. and Leach, S. (2006). Analysis of the potential for survival and seasonal activity of Aedes albopictus (Diptera: Culicidae) in the United Kingdom. Journal of Vector Ecology 31, 292304.CrossRefGoogle ScholarPubMed
Medlock, J. M., Hansford, K. M., Schaffner, F., Versteirt, V., Hendrickx, G., Zeller, H. and Bortel, W. V. (2012). A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector-Borne and Zoonotic Diseases 12, 435447.Google Scholar
Messina, J. P., Brady, O. J., Scott, T. W., Zou, C., Pigott, D. M., Duda, K. A., Bhatt, S., Katzelnick, L., Howes, R. E., Battle, K. E., Simmons, C. P. and Hay, S. I. (2014). Global spread of dengue virus types: mapping the 70 year history. Trends in Microbiology 22, 138146.Google Scholar
Moulay, D. and Pigne, Y. (2013). A metapopulation model for chikungunya including populations mobility on a large-scale network. Journal of Theoretical Biology 318, 129139.Google Scholar
Murray, K. O., Rodriguez, L. F., Herrington, E., Kharat, V., Vasilakis, N., Walker, C., Turner, C., Khuwaja, S., Arafat, R., Weaver, S. C., Martinez, D., Kilborn, C., Bueno, R. and Reyna, M. (2013). Identification of dengue fever cases in Houston, Texas, with evidence of autochthonous transmission between 2003 and 2005. Vector-Borne and Zoonotic Diseases 13, 835845.Google Scholar
Naish, S., Dale, P., Mackenzie, J. S., McBride, J., Mengersen, K. and Tong, S. (2014 a). Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infectious Diseases 14, 167.CrossRefGoogle ScholarPubMed
Naish, S., Dale, P., Mackenzie, J. S., McBride, J., Mengersen, K. and Tong, S. (2014 b). Spatial and temporal patterns of locally-acquired dengue transmission in northern Queensland, Australia, 1993–2012. PLoS ONE 9, e92524.CrossRefGoogle ScholarPubMed
Nasci, R. S. (2014). Movement of chikungunya virus into the Western hemisphere. Emerging Infectious Diseases 20, 13941395.Google Scholar
Nawrocki, S. J. and Hawley, W. A. (1987). Estimation of the northern limits of distribution of Aedes albopictus in North America. Journal of the American Mosquito Control Association 3, 314317.Google ScholarPubMed
Neteler, M., Roiz, D., Rocchini, D., Castellani, C. and Rizzoli, A. (2011). Terra and Aqua satellites track tiger mosquito invasion: modelling the potential distribution of Aedes albopictus in north-eastern Italy. International Journal of Health Geographics 10, 49.Google Scholar
Ogden, N. H., Milka, R., Caminade, C. and Gachon, P. (2014). Recent and projected future climatic suitability of North America for the Asian tiger mosquito Aedes albopictus . Parasites & Vectors 7, 532.CrossRefGoogle ScholarPubMed
Padmanabha, H., Correa, F., Legros, M., Nijhout, H. F., Lord, C. and Lounibos, L. P. (2012 a). An eco-physiological model of the impact of temperature on Aedes aegypti life history traits. Journal of Insect Physiology 58, 15971608.Google Scholar
Padmanabha, H., Durham, D., Correa, F., Diuk-Wasser, M. and Galvani, A. (2012 b). The interactive roles of Aedes aegypti super-production and human density in dengue transmission. PLoS Neglected Tropical Diseases 6, e1799.Google Scholar
Parham, P. E., Waldock, J., Christophides, G. K., Hemming, D., Agusto, F., Evans, K. J., Fefferman, N., Gaff, H., Gumel, A., LaDeau, S., Lenhart, S., Mickens, R. E., Naumova, E. N., Ostfeld, R. S., Ready, P. D., Thomas, M. B., Velasco-Hernandez, J. and Michael, E. (2015). Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philosophical Transactions of the Royal Society of London B: Biological Sciences 370, 20130551.Google Scholar
Perkins, T. A., Reiner, R. C., Rodriguez-Barraquer, I., Smith, D. L., Scott, T. W. and Cummings, D. A. T. (2014). A Review of Transmission Models of Dengue: a Quantitative and Qualitative Analysis of Model Features. Dengue and Dengue Hemorrhagic Fever, 2nd Edn. pp. 99114, CAB International, Wallingford.Google Scholar
Perkins, T. A., Metcalf, C. J. E., Grenfell, B. T. and Tatem, A. J. (2015). Estimating drivers of autochthonous transmission of chikungunya virus in its invasion of the Americas. PLoS Currents Outbreaks 7.Google Scholar
Peterson, A. T., Martínez-Campos, C., Nakazawa, Y. and Martínez-Meyer, E. (2005). Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Transactions of the Royal Society of Tropical Medicine and Hygiene 99, 647655.Google Scholar
Poletti, P., Messeri, G., Ajellii, M., Vallorani, R., Rizzo, C. and Merler, S. (2011). Transmission potential of chikungunya virus and control measures: the case of Italy. PLoS ONE 6, e18860.CrossRefGoogle ScholarPubMed
Ponlawat, A. and Harrington, L. C. (2005). Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. Journal of Medical Entomology 42, 844849.Google Scholar
Proestos, Y., Christophides, G. K., Erguler, K., Tanarhte, M., Waldock, J. and Lelieveld, J. (2015). Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation. Philosophical Transactions of the Royal Society B-Biological Sciences 370, 20130554.Google Scholar
Quam, M. B., Khan, K., Sears, J., Hu, W., Rocklov, J. and Wilder-Smith, A. (2015). Estimating air travel-associated importations of dengue virus into Italy. Journal of Travel Medicine 22, 186193.Google Scholar
Rabaa, M. A., Simmons, C. P., Fox, A., Le, M. Q., Nguyen, T. T. T., Le, H. Y., Gibbons, R. V., Nguyen, X. T., Holmes, E. C. and Aaskov, J. G. (2013). Dengue virus in sub-tropical Northern and Central Viet Nam: population immunity and climate shape patterns of viral invasion and maintenance. Plos Neglected Tropical Diseases 7, e2581.CrossRefGoogle ScholarPubMed
Racloz, V., Ramsey, R., Tong, S. and Hu, W. (2012). Surveillance of dengue fever virus: a review of epidemiological models and early warning systems. Plos Neglected Tropical Diseases 6, e1648.Google Scholar
Radke, E. G., Gregory, C. J., Kintziger, K. W., Sauber-Schatz, E. K., Hunsperger, E. A., Gallagher, G. R., Barber, J. M., Biggerstaff, B. J., Stanek, D. R., Tomashek, K. M. and Blackmore, C. G. (2012). Dengue outbreak in Key West, Florida, USA, 2009. Emerging Infectious Diseases 18, 135137.CrossRefGoogle ScholarPubMed
Raharimalala, F. N., Ravaomanarivo, L. H., Ravelonandro, P., Rafarasoa, L. S., Zouache, K., Tran-Van, V., Mousson, L., Failloux, A. B., Hellard, E., Moro, C. V., Ralisoa, B. O. and Mavingui, P. (2012). Biogeography of the two major arbovirus mosquito vectors, Aedes aegypti and Aedes albopictus (Diptera, Culicidae), in Madagascar. Parasites & Vectors 5, 56.CrossRefGoogle ScholarPubMed
Rai, K. S. (1991). Aedes albopictus in the Americas. Annual Review of Entomology 36, 459484.Google Scholar
Reiner, R. C., Perkins, T. A., Barker, C. M., Niu, T., Chaves, L. F., Ellis, A. M., George, D. B., Le Menach, A., Pulliam, J. R. C., Bisanzio, D., Buckee, C., Chiyaka, C., Cummings, D. A. T., Garcia, A. J., Gatton, M. L., Gething, P. W., Hartley, D. M., Johnston, G., Klein, E. Y., Michael, E., Lindsay, S. W., Lloyd, A. L., Pigott, D. M., Reisen, W. K., Ruktanonchai, N., Singh, B. K., Tatem, A. J., Kitron, U., Hay, S. I., Scott, T. W. et al. (2013). A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. Journal of the Royal Society, Interface 10, 20120921.Google Scholar
Reiter, P., Lathrop, S., Bunning, M., Biggerstaff, B., Singer, D., Tiwari, T., Baber, L., Amador, M., Thirion, J., Hayes, J., Seca, C., Mendez, J., Ramirez, B., Robinson, J., Rawlings, J., Vorndam, V., Waterman, S., Gubler, D., Clark, G. and Hayes, E. (2003). Texas lifestyle limits transmission of dengue virus. Emerging Infectious Diseases 9, 8689.Google Scholar
Rey, J. R. (2014). Dengue in Florida (USA). Insects 5, 9911000.Google Scholar
Rezza, G. (2014). Dengue and chikungunya: long-distance spread and outbreaks in naïve areas. Pathogens and Global Health 108, 349355.CrossRefGoogle ScholarPubMed
Rezza, G., Nicoletti, L., Angelini, R., Romi, R., Finarelli, A., Panning, M., Cordioli, P., Fortuna, C., Boros, S., Magurano, F., Silvi, G., Angelini, P., Dottori, M., Ciufolini, M., Majori, G. and Cassone, A. (2007). Infection with chikungunya virus in Italy: an outbreak in a temperate region. The Lancet 370, 18401846.Google Scholar
Ritchie, S. A., Pyke, A. T., Hall-Mendelin, S., Day, A., Mores, C. N., Christofferson, R. C., Gubler, D. J., Bennett, S. N. and van den Hurk, A. F. (2013). An explosive epidemic of DENV-3 in Cairns, Australia. PLoS ONE 8, e68137.Google Scholar
Roche, B., Leger, L., L'Ambert, G., Lacour, G., Foussadier, R., Besnard, G., Barre-Cardi, H., Simard, F. and Fontenille, D. (2015). The spread of Aedes albopictus in Metropolitan France: contribution of environmental drivers and human activities and predictions for a near future. PLoS ONE 10, e0125600.Google Scholar
Rochlin, I., Ninivaggi, D. V., Hutchinson, M. L. and Farajollahi, A. (2013). Climate change and range expansion of the Asian Tiger Mosquito (Aedes albopictus) in Northeastern USA: implications for public health practitioners. PLoS ONE 8, e60874.Google Scholar
Rock, K. S., Wood, D. A. and Keeling, M. J. (2015). Age- and bite-structured models for vector-borne diseases. Epidemics 12, 2029.CrossRefGoogle ScholarPubMed
Rodriguez-Morales, A. J. (2015). Zika: the new arbovirus threat for Latin America. The Journal of Infection in Developing Countries 9, 684685.Google Scholar
Romeo Aznar, V., Sol De Majo, M., Fischer, S., Francisco, D., Natiello, M. A. and Solari, H. G. (2015). A model for the development of Aedes (Stegomyia) aegypti as a function of the available food. Journal of Theoretical Biology 365, 311324.CrossRefGoogle Scholar
Ruiz-Moreno, D., Vargas, I. S., Olson, K. E. and Harrington, L. C. (2012). Modeling dynamic introduction of chikungunya virus in the United States. Plos Neglected Tropical Diseases 6, e1918.CrossRefGoogle ScholarPubMed
Russell, R. C., Currie, B. J., Lindsay, M. D., Mackenzie, J. S., Ritchie, S. A. and Whelan, P. I. (2009). Dengue and climate change in Australia: predictions for the future should incorporate knowledge from the past. The Medical Journal of Australia 190, 265268.CrossRefGoogle ScholarPubMed
Savage, H. M., Niebylski, M. L., Smith, G. C., Mitchell, C. J. and Craig, G. B. (1993). Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) at a temperate North American site. Journal of Medical Entomology 30, 2734.Google Scholar
Schoof, H. F. (1967). Mating, resting habits and dispersal of Aedes aegypti . Bulletin of the World Health Organization 36, 600601.Google Scholar
Scott, T. W., Amerasinghe, P. H., Morrison, A. C., Lorenz, L. H., Clark, G. G., Strickman, D., Kittayapong, P. and Edman, J. D. (2000). Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. Journal of Medical Entomology 37, 89101.Google Scholar
Seyler, T., Grandesso, F., Le Strat, Y., Tarantola, A. and Depoortere, E. (2009). Assessing the risk of importing dengue and chikungunya viruses to the European Union. Epidemics 1, 175184.Google Scholar
Smith, D. L., Dushoff, J. and McKenzie, F. E. (2004). The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biology 2, e368.Google Scholar
Smith, D. L., Perkins, T. A., Reiner, R. C., Barker, C. M., Niu, T., Chaves, L. F., Ellis, A. M., George, D. B., Menach, A. L., Pulliam, J. R. C., Bisanzio, D., Buckee, C., Chiyaka, C., Cummings, D. A. T., Garcia, A. J., Gatton, M. L., Gething, P. W., Hartley, D. M., Johnston, G., Klein, E. Y., Michael, E., Lloyd, A. L., Pigott, D. M., Reisen, W. K., Ruktanonchai, N., Singh, B. K., Stoller, J., Tatem, A. J., Kitron, U., Godfray, H. C. J. et al. (2014). Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Transactions of the Royal Society of Tropical Medicine and Hygiene 108, 185197.Google Scholar
Stoddard, S. T., Morrison, A. C., Vazquez-Prokopec, G. M., Paz Soldan, V., Kochel, T. J., Kitron, U., Elder, J. P. and Scott, T. W. (2009). The role of human movement in the transmission of vector-borne pathogens. PLoS Neglected Tropical Diseases 3, e481.CrossRefGoogle ScholarPubMed
Stoddard, S. T., Forshey, B. M., Morrison, A. C., Paz-Soldan, V. A., Vazquez-Prokopec, G. M., Astete, H., Reiner, R. C., Vilcarromero, S., Elder, J. P., Halsey, E. S., Kochel, T. J., Kitron, U. and Scott, T. W. (2013). House-to-house human movement drives dengue virus transmission. Proceedings of the National Academy of Sciences of the United States of America 110, 994999.Google Scholar
Stramer, S. L., Linnen, J. M., Carrick, J. M., Foster, G. A., Krysztof, D. E., Zou, S., Dodd, R. Y., Tirado-Marrero, L. M., Hunsperger, E., Santiago, G. A., Muñoz-Jordan, J. L. and Tomashek, K. M. (2012). Dengue viremia in blood donors identified by RNA and detection of dengue transfusion transmission during the 2007 dengue outbreak in Puerto Rico. Transfusion 52, 16571666.CrossRefGoogle ScholarPubMed
Tabachnick, W. J. (1991). Evolutionary genetics and arthropod-borne disease: the yellow fever mosquito. American Entomologist 37, 1426.CrossRefGoogle Scholar
Takumi, K., Scholte, E. J., Braks, M., Reusken, C., Avenell, D. and Medlock, J. M. (2009). Introduction, scenarios for establishment and seasonal activity of Aedes albopictus in The Netherlands. Vector-Borne and Zoonotic Diseases 9, 191196.Google Scholar
Tang, Y., Kou, Z., Zhang, F., Yao, X., Liu, S., Ma, J., Zhou, Y., Zhao, W., Tang, X. and Jin, X. (2010). Both viremia and cytokine levels associate with the lack of severe disease in secondary dengue 1 infection among adult Chinese patients. PLoS ONE 5, e15631.Google Scholar
Tangena, J. A. A., Thammavong, P., Hiscox, A., Lindsay, S. W. and Brey, P. T. (2015). The human-baited double net trap: an alternative to human landing catches for collecting outdoor biting mosquitoes in Lao PDR. PLoS ONE 10, e0138735.Google Scholar
Tatem, A. J., Huang, Z., Das, A., Qi, Q., Roth, J. and Qiu, Y. (2012). Air travel and vector-borne disease movement. Parasitology 139, 18161830.CrossRefGoogle ScholarPubMed
Teets, F. D., Ramgopal, M. N., Sweeney, K. D., Graham, A. S., Michael, S. F. and Isern, S. (2014). Origin of the dengue virus outbreak in Martin County, Florida, USA 2013. Virology Reports 1–2, 28.Google Scholar
Thiberville, S. D., Moyen, N., Dupuis-Maguiraga, L., Nougairede, A., Gould, E. A., Roques, P. and de Lamballerie, X. (2013). Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Research 99, 345370.CrossRefGoogle ScholarPubMed
Thomas, S. J., Aldstadt, J., Jarman, R. G., Buddhari, D., Yoon, I. K., Richardson, J. H., Ponlawat, A., Iamsirithaworn, S., Scott, T. W., Rothman, A. L., Gibbons, R. V., Lambrechts, L. and Endy, T. P. (2015). Improving dengue virus capture rates in humans and vectors in Kamphaeng Phet Province, Thailand, using an enhanced spatiotemporal surveillance strategy. American Journal of Tropical Medicine and Hygiene 93, 2432.Google Scholar
Thomas, S. M., Tjaden, N. B., van den Bos, S. and Beierkuhnlein, C. (2014). Implementing cargo movement into climate based risk assessment of vector-borne diseases. International Journal of Environmental Research and Public Health 11, 33603374.CrossRefGoogle ScholarPubMed
Tran, A. and Raffy, M. (2006). On the dynamics of dengue epidemics from large-scale information. Theoretical Population Biology 69, 312.CrossRefGoogle ScholarPubMed
Tran, A., L'Ambert, G., Lacour, G., Benoit, R., Demarchi, M., Cros, M., Cailly, P., Aubry-Kientz, M., Balenghien, T. and Ezanno, P. (2013). A rainfall- and temperature-driven abundance model for Aedes albopictus populations. International Journal of Environmental Research and Public Health 10, 16981719.Google Scholar
Tsetsarkin, K. A., Vanlandingham, D. L., Mcgee, C. E. and Higgs, S. (2007). A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathogens 3, 18951906.Google Scholar
Valerio, L., Marini, F., Bongiorno, G., Facchinelli, L., Pombi, M., Caputo, B., Maroli, M. and Della Torre, A. (2010). Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in urban and rural contexts within Rome province, Italy. Vector-Borne and Zoonotic Diseases 10, 291294.Google Scholar
Vasilakis, N. and Weaver, S. C. (2008). The history and evolution of human dengue emergence. Advances in Virus Research 72, 176.Google Scholar
Waldock, J., Chandra, N. L., Lelieveld, J., Proestos, Y., Michael, E., Christophides, G. and Parham, P. E. (2013). The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology. Pathogens and Global Health 107, 224241.Google Scholar
Wallinga, J. and Lipsitch, M. (2007). How generation intervals shape the relationship between growth rates and reproductive numbers. Proceedings of the Royal Society B 274, 599604.CrossRefGoogle ScholarPubMed
Wallinga, J. and Teunis, P. (2004). Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. American Journal of Epidemiology 160, 509516.CrossRefGoogle ScholarPubMed
Waterman, S. H., Novak, R. J., Sather, G. E., Bailey, R. E., Rios, I. and Gubler, D. J. (1985). Dengue transmission in two Puerto Rican communities in 1982. American Journal of Tropical Medicine and Hygiene 34, 625632.CrossRefGoogle ScholarPubMed
Weaver, S. C. and Lecuit, M. (2015). Chikungunya virus and the global spread of a mosquito-borne disease. New England Journal of Medicine 372, 12311239.CrossRefGoogle ScholarPubMed
Werneck, G. L., Costa, C. H. N., Walker, A. M., David, J. R., Wand, M. and Maguire, J. H. (2007). Multilevel modelling of the incidence of visceral leishmaniasis in Teresina, Brazil. Epidemiology & Infection 135, 195201.CrossRefGoogle ScholarPubMed
Whitehorn, J., Kien, D. T. H., Nguyen, N. M., Nguyen, H. L., Kyrylos, P. P., Carrington, L. B., Tran, C. N. B., Quyen, N. T. H., Thi, L. V., Le Thi, D., Truong, N. T., Luong, T. T. H., Nguyen, C. V. V., Wills, B., Wolbers, M. and Simmons, C. P. (2015). Comparative susceptibility of Aedes albopictus and Aedes aegypti to dengue virus infection after feeding on blood of viremic humans: implications for public health. The Journal of Infectious Diseases 212, 11821190.Google Scholar
Williams, C. R., Mincham, G., Ritchie, S. A., Viennet, E. and Harley, D. (2014). Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: implications for dengue outbreaks. Parasites & Vectors 7, 447.CrossRefGoogle ScholarPubMed
Yakob, L. and Clements, A. C. A. (2013). A mathematical model of chikungunya dynamics and control: the major epidemic on Réunion Island. PLoS ONE 8, e57448.Google Scholar
Yang, H. M., Macoris, M. L. G., Galvani, K. C., Andrighetti, M. T. M. and Wanderley, D. M. V. (2009). Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiology and Infection 137, 11881202.Google Scholar
Yoon, I. K., Alera, M. T., Lago, C. B., Tac-An, I. A., Villa, D., Fernandez, S., Thaisomboonsuk, B., Klungthong, C., Levy, J. W., Velasco, J. M., Roque, V. G., Salje, H., Macareo, L. R., Hermann, L. L., Nisalak, A. and Srikiatkhachorn, A. (2015). High rate of subclinical chikungunya virus infection and association of neutralizing antibody with protection in a prospective cohort in the Philippines. PLoS Neglected Tropical Diseases 9, e0003764.Google Scholar