Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T23:09:55.713Z Has data issue: false hasContentIssue false

Cryptostatin, a chagasin-family cysteine protease inhibitor of Cryptosporidium parvum

Published online by Cambridge University Press:  23 March 2012

J.-M. KANG
Affiliation:
Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660–751, Korea
H.-L. JU
Affiliation:
Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660–751, Korea
J.-R. YU
Affiliation:
Department of Environmental and Tropical Medicine, Konkuk University School of Medicine, Seoul 143–701, Korea
W.-M. SOHN
Affiliation:
Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660–751, Korea
B.-K. NA*
Affiliation:
Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660–751, Korea
*
*Corresponding author: Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660–751, Korea. Tel: +82 55 772 8102. Fax: +82 55 772 8109. E-mail address: [email protected]

Summary

Cysteine proteases of pathogenic protozoan parasites play pivotal roles in the life cycle of parasites, but strict regulation of their activities is also essential for maintenance of parasite physiology and interaction with hosts. In this study, we identified and characterized cryptostatin, a novel inhibitor of cysteine protease (ICP) of Cryptosporidium parvum. Cryptostatin showed low sequence identity to other chagasin-family ICPs, but 3 motifs (NPTTG, GXGG, and RPW/F motifs), which are evolutionarily conserved in chagasin-family ICPs, were found in the sequence. The overall structure of cryptostatin consisted of 8 β-strands that progressed in parallel and closely resembled the immunoglobulin fold. Recombinant cryptostatin inhibited various cysteine proteases, including papain, human cathepsin B, human cathepsin L, and cryptopain-1, with Ki's in the picomolar range. Cryptostatin was active over a wide pH range and was highly stable under physiological conditions. The protein was thermostable and retained its inhibitory activity even after incubation at 95°C. Cryptostatin formed tight complexes with cysteine proteases, so the complexes remained intact in the presence of sodium dodecyl sulfate and β-mercaptoethanol, but they were disassembled by boiling. An immunogold electron microscopy analysis demonstrated diffused localization of cryptostatin within oocystes and meronts, but not within trophozoites, which suggests a possible role for cryptostatin in host cell invasion by C. parvum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrett, A. J., Kembhavi, A. A., Brown, M. A., Kirschke, H., Knight, C. G., Tamai, M. and Hanada, K. (1982). l-trans-epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H, and L. The Biochemical Journal 201, 189198.CrossRefGoogle ScholarPubMed
Besteiro, S., Coombs, G. H. and Mottram, J. C. (2004). A potential role for ICP, a Leishmanial inhibitor of cysteine peptidases, in the interaction between host and parasite. Molecular Microbiology 54, 12241236.CrossRefGoogle ScholarPubMed
Björk, B., Pol, E., Raub-Segall, E., Abrahamson, M., Rowan, A. D. and Mort, J. S. (1994). Differential changes in the association and dissociation rate constants for binding of cystatins to target proteinases occurring on N-terminal truncation of the inhibitors indicate that the interaction mechanism varies with different enzymes. The Biochemical Journal 299, 219225.CrossRefGoogle ScholarPubMed
Casados-Vázquez, L. E., Lara-González, S. and Brieba, L. G. (2011). Crystal structure of the cysteine protease inhibitor 2 from Entamoeba histolytica: functional convergence of a common protein fold. Gene 471, 4552.CrossRefGoogle ScholarPubMed
Cazzulo, J. J. (2002). Proteinases of Trypanosoma cruzi: patential targets for the chemotherapy of Changas disease. Current Topics in Medicinal Chemistry 2, 12611271.CrossRefGoogle Scholar
Chen, X., Xie, S., Bhat, S., Kumar, N., Shapiro, T. A. and Liu, J. O. (2009). Fumagillin and fumarranol interact with P. falciparum methionine aminopeptidase 2 and inhibit malaria parasite growth in vitro and in vivo. Chemical Biology 16, 193202.CrossRefGoogle Scholar
Dou, Z. and Carruthers, V. B. (2011). Cathepsin proteases in Toxoplasma gondii. Advances in Experimental Medicine and Biology 712, 4961.CrossRefGoogle ScholarPubMed
Ersmark, K., Samuelsson, B. and Hallberg, A. (2006). Plasmepsins as potential targets for new antimalarial therapy. Medicinal Research Reviews 26, 626666.CrossRefGoogle ScholarPubMed
Fayer, R., Morgan, U. and Upton, S. J. (2000). Epidemiology of Cryptosporidium transmission, detection and identification. International Journal for Parasitology 30, 13051322.CrossRefGoogle ScholarPubMed
Figueiredo da Silva, A. A., Vieira, L .D. C., Krieger, M. A., Goldenberg, S., Zanchin, N. I. T. and Guimaraes, B. G. (2007). Crystal structure of chagasin, the endogenous cysteine-protease inhibitor from Trypanosoma cruzi. Journal of Structural Biology 157, 416423.CrossRefGoogle ScholarPubMed
Hames, D. B. (1990). One-dimensional polyacrylamide gel electrophoresis. In Gel Electrophoresis of Proteins (ed. Hames, D. B. and Rickwood, D.), pp. 1147. Oxford University Press, New York, USA.Google Scholar
Huang, R., Que, X., Hirata, K., Brinen, L. S., Lee, J. H., Hansell, E., Engel, J., Sajid, M. and Reed, S. (2009). The cathepsin L of Toxoplasma gondii (TgCPL) and its endogenous macromolecular inhibitor, toxostatin. Molecular and Biochemical Parasitology 164, 8694.CrossRefGoogle ScholarPubMed
Kang, J. M., Sohn, W. M., Ju, J. W., Kim, T. S. and Na, B. K. (2010). Identification and characterization of a serine protease inhibitor of Clonorchis sinensis. Acta Tropica 116, 134140.CrossRefGoogle ScholarPubMed
Kang, J. M., Lee, K. H., Sohn, W. M. and Na, B. K. (2011 a). Identification and functional characterization of CsStefin-1, a cysteine protease inhibitor of Clonorchis sinensis. Molecular and Biochemical Parasitology 177, 126134.CrossRefGoogle ScholarPubMed
Kang, J. M., Ju, H. L., Sohn, W. M. and Na, B. K. (2011 b). Molecular cloning and characterization of a M17 leucine aminopeptidase of Cryptosporidium parvum. Parasitology 138, 682690.CrossRefGoogle ScholarPubMed
Knox, D. P. (2007). Proteinase inhibitors and helminth parasite infection. Parasite Immunology 29, 5771.CrossRefGoogle ScholarPubMed
Kosek, M., Alcantara, C., Lima, A. A. and Guerrant, R. L. (2001). Cryptosporidiosis: an update. Lancet Infectious Diseases 1, 262269.CrossRefGoogle ScholarPubMed
Laskowski, M. Jr. and Kato, I. (1980). Protein inhibitors of proteinases. Annual Review of Biochemistry 49, 593626.CrossRefGoogle ScholarPubMed
Lee, J. G., Han, E. T., Park, W. Y. and Yu, J. R. (2009). Ultrastructural localization of Cryptosporidium parvum antigen using human patients sera. Korean Journal of Parasitology 47, 171174.CrossRefGoogle ScholarPubMed
Ljunggren, A., Redzynia, I., Alvarez-Fernandez, M., Abrahamson, M., Mort, J. S., Krupa, J. C., Jaskolski, M. and Bujacz, G. (2007). Crystal structure of the parasite protease inhibitor chagasin in complex with a host target cysteine protease. Journal of Molecular Biology 371, 137153.CrossRefGoogle ScholarPubMed
Monteiro, A. C. S., Abrahamson, M., Lima, A. P. C. A., Vannier-Santos, M. A. and Scharfstein, J. (2001). Identification, characterization and localization of chagasin, a tight-binding cysteine proteases inhibitor in Trypanosoma cruzi. Journal of Cell Science 114, 39333942.CrossRefGoogle ScholarPubMed
Na, B. K., Kang, J. M., Cheun, H. I., Cho, S. H., Moon, S. U., Kim, T. S. and Sohn, W. M. (2009). Cryptopain-1, a cysteine protease of Cryptosporidium parvum, does not require the pro-domain for folding. Parasitology 136, 149157.CrossRefGoogle Scholar
Pandey, K. C., Singh, N., Arastu-Kapur, S., Bogyo, M. and Rosenthal, P. J. (2006). Falstatin, a cysteine protease inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PLoS Pathogens 2, e117.CrossRefGoogle ScholarPubMed
Peterson, C. (1992). Cryptosporidiosis in patients with human immunodeficiency virus. Clinical Infectious Diseases 15, 903909.CrossRefGoogle Scholar
Redzynia, I., Ljunggren, A., Abrahamson, M., Mort, J. S., Krupa, J. C., Jaskolski, M. and Bujacz, G. (2008). Displacement of the occluding loop by the parasite protein, chagasin, results in efficient inhibition of human cathepsin B. Journal of Biological Chemistry 283, 2281522825.CrossRefGoogle ScholarPubMed
Redzynia, I., Ljunggren, A., Bujacz, A., Abrahamson, M., Jaskolski, M. and Bujacz, G. (2009). Crystal structure of the parasite inhibitor chagasin in complex with papain allows identification of structural requirements for broad reactivity and specificity determinants for target proteases. FEBS Journal 276, 793806.CrossRefGoogle ScholarPubMed
dos Reis, F. C., Smith, B. O., Santos, C. C., Costa, T. F., Scharfstein, J., Coombs, G. H., Mottram, J. C. and Lima, A. P. C. A. (2008). The role of conserved residues of chagasin in the inhibition of cysteine peptidases. FEBS Letters 582, 485490.CrossRefGoogle ScholarPubMed
Riekenberg, S., Witjes, B., Šariæ, M., Bruchhaus, I. and Scholze, H. (2005). Identification of EhICP1, a chagasin-like cysteine protease inhibitor of Entamoeba histolytica. FEBS Letters 579, 15731578.CrossRefGoogle ScholarPubMed
Rigden, D. J., Mosolov, V. V. and Galperin, M. Y. (2002). Sequence conservation in the chagasin family suggests a common trend in cysteine proteinase binding by unrelated protein inhibitors. Protein Science 11, 19711977.CrossRefGoogle ScholarPubMed
Rosenthal, P. J. (2004). Cysteine proteases of malaria parasites. Internal Journal for Parasitology 34, 14891499.CrossRefGoogle ScholarPubMed
Salmon, D., Aido-Machado, R., Diehl, A., Leidert, M., Schmetzer, O., Lima, A. P. C. A., Scharfstein, J., Oschkinat, H. and Pires, J. R. (2006). Solution structure and backbone dynamics of the Trypanosoma cruzi cysteine protease inhibitor chagasin. Journal of Molecular Biology 357, 15111521.CrossRefGoogle ScholarPubMed
Sanderson, S. J., Westrop, J., Scharfstein, J., Mottram, J. C. and Coombs, G. H. (2003). Functional conservation of a natural cysteine peptidase inhibitor in protozoan and bacterial pathogens. FEBS Letters 542, 1216.CrossRefGoogle ScholarPubMed
Santos, C. C., Sant'Anna, C., Terres, A., Cunha-e-Silva, N. L., Scharfstein, J. and Lima, A. P. C. A. (2005). Chagasin, the endogenous cysteine-protease inhibitor of Trypanosoma cruzi, modulates parasite differentiation and invasion of mammalian cells. Journal of Cell Science 118, 901915.CrossRefGoogle ScholarPubMed
Santos, C. C., Scharfstein, J. and Lima, A. P. C. A. (2006). Role of chagasin-like inhibitors as endogenous regulators of cysteine proteases in parasitic protozoa. Parasitology Research 99, 323324.CrossRefGoogle ScholarPubMed
Saric, M., Vahrmann, A., Bruchhaus, I., Bakker-Grunwald, T. and Scholze, H. (2006). The second cysteine protease inhibitor, EhICP2, has a different localization in trophozoites of Entamoeba histolytica than EhICP1. Parasitology Research 100, 171174.CrossRefGoogle Scholar
Sato, D., Nakada-Tsukui, K., Okada, M. and Nozaki, T. (2006). Two cysteine protease inhibitors, EhICP1 and 2, localized in distinct compartments, negatively regulate secretion in Entamoeba histolytica. FEBS Letters 580, 53065312.CrossRefGoogle ScholarPubMed
Smith, B. O., Picken, N. C., Westrop, G. D., Bromek, K., Mottram, J. C. and Coombs, G. H. (2006). The structure of Leishmania Mexicana Icp provides evidence for convergent evolution of cysteine peptidase inhibitors. Journal of Biological Chemistry 281, 58215828.CrossRefGoogle ScholarPubMed
Teixeira, C., Gomes, J. R. and Gomes, P. (2011). Falcipains, Plasmodium falciparum cysteine proteases as key drug targets against malaria. Current Medicinal Chemistry 18, 15551572.CrossRefGoogle ScholarPubMed
Tzipori, S. and Ward, H. (2002). Cryptosporidosis: biology, pathogenesis and disease. Microbes and Infection 4, 10471058.CrossRefGoogle Scholar
Wang, S. X., Pandey, K. C., Scharfstein, J., Whisstock, J., Huang, R. K., Jacobelli, J., Fletterick, R. J., Rosenthal, P. J., Abrahamson, M., Brinen, L. S., Rossi, A., Sali, A. and McKerrow, J. H. (2007). The structure of chagasin in complex with a cysteine protease clarifies the binding mode and evolution of an inhibitor family. Structure 15, 535543.CrossRefGoogle ScholarPubMed
Wanyiri, J. W., Techasintana, P., O'Connor, R. M., Blackman, M. J., Kim, K. and Ward, H. D. (2009). Role of CpSUB1, a subtilisin-like protease, in Cryptosporidium parvum infection in vitro. Eukaryotic Cell 8, 470477.CrossRefGoogle ScholarPubMed