Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T16:29:50.492Z Has data issue: false hasContentIssue false

CrATP as a new inhibitor of ecto-ATPases of trypanosomatids

Published online by Cambridge University Press:  07 January 2009

O. C. MOREIRA
Affiliation:
Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brasil
P. F. RIOS
Affiliation:
Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brasil
F. F. ESTEVES
Affiliation:
Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brasil
J. R. MEYER-FERNANDES
Affiliation:
Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brasil
H. BARRABIN*
Affiliation:
Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brasil
*
*Corresponding author: Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária, CEP 21941-590, Rio de Janeiro, RJ, Brazil. Fax: +55 21 2270 8647. E-mail: [email protected]

Summary

Trypanosomatid protozoa include heteroxenic species some of them pathogenic for men, animals and plants. Parasite membrane contains ecto-enzymes whose active sites face the external medium rather than the cytoplasm. Herpetomonas sp. displayed a Mg2+-dependent ecto-ATPase activity, a Mg-independent ecto-ADPase and an ecto-phosphatase activity. Both, the ecto-ADPase and phosphatase activities were insensitive to CrATP (chromium(III) adenosine 5′-triphosphate complex). Ecto-ATPase activity was reversibly inhibited. At 2 mm ATP the apparent Ki was 4·7±1·0 μm but a fraction of about 40–50% was insensitive to CrATP. Remarkably, at low substrate concentration (0·2 mm) more than 90% of the ecto-ATPase was inhibited with Ki=0·33±0·10 μm. These parameter dependences are interpreted as the presence of 2 ecto-ATPases activities, one of them with high ATP apparent affinity and sensitivity to CrATP. DIDS (4,4 diisothiocyanatostilbene 2,2′ disulfonic acid), suramin and ADP were also effective as inhibitors. Only ADP presented no additive inhibition with CrATP. The pattern of partial inhibition by CrATP was also observed for the ecto-ATPase activities of Leishmania amazonensis, Trypanosoma cruzi and Trypanosoma rangeli. CrATP emerges as a new inhibitor of ecto-ATPases and as a tool for a better understanding of properties and role of ecto-ATPases in the biology of parasites.

Type
Research Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alves-Ferreira, M., Dutra, P. M., Lopes, A. H., Ferreira-Pereira, A., Scofano, H. M. and Meyer-Fernandes, J. R. (2003). Magnesium-dependent ecto-ATP diphosphohydrolase activity in Herpetomonas muscarum muscarum. Current Microbiology 47, 265271.CrossRefGoogle ScholarPubMed
Asai, T. and Suzuki, Y. (1990). Remarkable activities of nucleoside triphosphate hydrolase in the tachyzoites of both virulent and avirulent strains of Toxoplasma gondii. FEMS Microbiology Letters 60, 8992.CrossRefGoogle ScholarPubMed
Asai, T., Miura, S., Sibley, L. D., Okabayashi, H. and Takeuchi, T. (1995). Biochemical and molecular characterization of nucleoside triphosphate hydrolase isozymes from the parasitic protozoan Toxoplasma gondii. Journal of Biological Chemistry 270, 1139111397.CrossRefGoogle ScholarPubMed
Attias, M., Roitman, I., Camargo, E. P., Dollet, M. and De Souza, W. (1988). Comparative analysis of the fine structure of four isolates of trypanosomatids of the genus Phytomonas. The Journal of Protozoology 35, 365370.CrossRefGoogle Scholar
Bakker-Grunwald, T. and Parduhn, H. (1993). The Ca(2+)-ATPase activity of Entamoeba histolytica is exposed towards the medium and towards the lumen of intracellular vesicles. Molecular and Biochemichal Parasitology 57, 167170.CrossRefGoogle ScholarPubMed
Barros, F. S., De Menezes, L. F., Pinheiro, A. A., Silva, E. F., Lopes, A. H., De Souza, W. and Meyer-Fernandes, J. R. (2000). Ectonucleotide diphosphohydrolase activities in Entamoeba histolytica. Archives of Biochemistry and Biophysics 375, 304314.CrossRefGoogle ScholarPubMed
Bermudes, D., Peck, K. R., Afifi, M. A., Beckers, C. J. and Joiner, K. A. (1994). Tandemly repeated genes encode nucleoside triphosphate hydrolase isoforms secreted into the parasitophorous vacuole of Toxoplasma gondii. Journal of Biological Chemistry 269, 2925229260.CrossRefGoogle ScholarPubMed
Bernardes, C. F., Meyer-Fernandes, J. R., Saad-Nehme, J., Vannier-Santos, M., Peres-Sampaio, C. E. and Vercesi, A. E. (2001). Effects of 4,4′-diisothyocyanatostilbene-2,2′-disulfonic acid on Trypanosoma cruzi proliferation and Ca(2+) homeostasis. The International Journal of Biochemistry & Cell Biology 32, 519527.CrossRefGoogle Scholar
Berredo-Pinho, M., Peres-Sampaio, C. E., Chrispim, P. P., Belmont-Firpo, R., Lemos, A. P., Martiny, A., Vannier-Santos, M. A. and Meyer-Fernandes, J. R. (2001). A Mg-dependent ecto-ATPase in Leishmania amazonensis and its possible role in adenosine acquisition and virulence. Archives of Biochemistry and Biophysics 391, 1624.CrossRefGoogle ScholarPubMed
Binderup, K., Watanabe, L., Polikarpov, I., Preiss, J. and Arni, R. K. (2000). Crystallization and preliminary X-ray diffraction analysis of the catalytic subunit of ADP-glucose pyrophosphorylase from potato tuber. Acta Crystallographica. Section D, Biological Crystallography 56, 192194.CrossRefGoogle ScholarPubMed
Bisaggio, D. F., Peres-Sampaio, C. E., Meyer-Fernandes, J. R. and Souto-Padron, T. (2003). Ecto-ATPase activity on the surface of Trypanosoma cruzi and its possible role in the parasite-host cell interaction. Parasitology Research 91, 273282.CrossRefGoogle ScholarPubMed
Camargo, E. (1999). Phytomonas and other trypanosomatid parasites of plants and fruit. Advances in Parasitology 42, 29112.CrossRefGoogle ScholarPubMed
Camargo, E. P., Kastelein, P. and Roitman, I. (1990). Trypanosomatid parasites of plants (phytomonas). Parasitology Today 60, 2225.CrossRefGoogle Scholar
Catarino, L. M., Serrano, M. G. Jr., Covazzana, M., Almeida, M. L., Kaneshima, E. K., Campaner, M., Jankevicius, J. V., Teixeira, M. M. G. and Itow-Jankevicius, S. (2001). Classification of trypanosomatids from fruits and seeds using morphological, biochemical and molecular markers revealed several genera among fruit isolates. FEMS Microbiological Letters 201, 6572.CrossRefGoogle ScholarPubMed
Danenberg, K. D. and Cleland, W. W. (1975). Use of chromium-adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase. Biochemistry 14, 2839.CrossRefGoogle ScholarPubMed
de Jesus, J. B., de Sa Pinheiro, A. A., Lopes, A. H. and Meyer-Fernandes, J. R. (2002). An ectonucleotide ATP-diphosphohydrolase activity in Trichomonas vaginalis stimulated by galactose and its possible role in virulence. Zeitschrift für Naturforschung [C] 57, 890896.CrossRefGoogle ScholarPubMed
De Pierre, J. W. and Karnovsky, M. L. (1973). Plasma membranes of mammalian cells: a review of methods for their characterization and isolation. The Journal of Cell Biology 56, 275303.CrossRefGoogle Scholar
De Pierre, J. W. and Karnovsky, M. L. (1974). Ecto-enzymes of the guinea pig polymorphonuclear leukocyte. I. Evidence for an ecto-adenosine monophosphatase, adenosine triphosphatase, and -p-nitrophenyl phosphates. Journal of Biological Chemistry 249, 71117120.Google ScholarPubMed
DePamphilis, M. L. and Cleland, W. W. (1973). Preparation and properties of chromium (3)-nucleotide complexes for use in the study of enzyme mechanisms. Biochemistry 12, 37143724.CrossRefGoogle Scholar
Desjeux, P. (2004). Leishmaniasis: current situation and new perspectives. Comparative Immunology, Microbiology and Infectious Diseases 27, 305318.CrossRefGoogle ScholarPubMed
Dollet, M. (1984). Plant diseases caused by flagellate protozoa (Phytomonas). Annual Review of Phytopathology 22, 115132.CrossRefGoogle Scholar
dos Passos Lemos, A., de Sa Pinheiro, A. A., de Berredo-Pinho, M., Fonseca de Souza, L., Motta, C. M., de Souza, W. and Meyer-Fernandes, R. (2002). Ectonucleotide diphosphohydrolase activity in Crithidia deanei. Parasitology Research 88, 905911.CrossRefGoogle ScholarPubMed
Einholm, A. P., Vilsen, B. and Andersen, J. P. (2004). Importance of transmembrane segment M1 of the sarcoplasmic reticulum Ca2+-ATPase in Ca2+ occlusion and phosphoenzyme processing. Journal of Biological Chemistry 279, 1588815896.CrossRefGoogle ScholarPubMed
Freymuller, E., Milder, R., Jankevicius, J. V., Jankevicius, S. I. and Camargo, E. P. (1990). Ultrastructural studies on the trypanosomatid Phytomonas serpens in the salivary glands of a phytophagous Hemipteran. The Journal of Protozoology 37, 225229.CrossRefGoogle Scholar
Furuya, T., Zhong, L., Meyer-Fernandes, J. R., Lu, H. G., Moreno, S. N. and Docampo, R. (1998). Ecto-protein tyrosine phosphatase activity in Trypanosoma cruzi infective stages. Molecular and Biochemical Parasitology 92, 339348.CrossRefGoogle ScholarPubMed
Handa, M. and Guidotti, G. (1996). Purification and cloning of a soluble ATP diphosphohydrolase (apyrase) from potato tubers (Solanum tuberosum). Biochemical and Biophysical Research Communications 218, 916923.CrossRefGoogle ScholarPubMed
Heine, P., Braun, N., Heilbronn, A. and Zimmermann, H. (1999). Functional characterization of rat ecto-ATPase and ecto-ATP diphosphohydrolase after heterologous expression in CHO cells. European Journal of Biochemistry 262, 102107.CrossRefGoogle ScholarPubMed
Jankevicius, J. V., Jankevicius, S., Campaner, M., Conchon, I., Maeda, L. A., Teixeira, M. M. G., Freymuller, S. and Camargo, E. P. (1989). Life cycle and culturing of Phytomonas serpens (Gibbs), a trypanosomatid parasite of tomatoes. The Journal of Protozoology 36, 265271.CrossRefGoogle Scholar
Kirley, T. L. (1997). Complementary DNA cloning and sequencing of the chicken muscle ecto-ATPase. Homology with the lymphoid cell activation antigen CD39. Journal of Biological Chemistry 272, 10761081.CrossRefGoogle ScholarPubMed
Lafont, A. (1909). Sur la présence d'um parasite de la classe des flagellés dans le latex de l'Euphorbia pilulifera. Comptes Rendus des Séances de la Société de Biologie et de ses Filiales 66, 10111013.Google Scholar
Lewis-Carl, S. A., Smith, T. M. and Kirley, T. L. (1998). Cross-linking induces homodimer formation and inhibits enzymatic activity of chicken stomach ecto-apyrase. Biochemical and Molecular Biology International 44, 463470.Google ScholarPubMed
Linnertz, H., Thönges, D. and Schoner, W. (1995). Na+/K(+)-ATPase with a blocked E1ATP site still allows backdoor phosphorylation of the E2ATP site. European Journal of Biochemistry 232, 420424.CrossRefGoogle ScholarPubMed
Lowry, O. H. and Lopes, J. (1946). The determination of inorganic phosphate in the presence of labile phosphate esters. Journal of Biological Chemistry 162, 421428.CrossRefGoogle ScholarPubMed
Meyer-Fernandes, J. R. (2002). Ecto-ATPases in protozoa parasites: looking for a function. Parasitology International 51, 299303.CrossRefGoogle Scholar
Meyer-Fernandes, J. R., Dutra, P. M. L., Rodrigues, C. O., Saad- Nehme, J.and Lopes, A. H. C. S. (1997). Mg-dependent ecto-ATPase activity in Leishmania tropica. Archives of Biochemistry and Biophysics 341, 4046.CrossRefGoogle ScholarPubMed
Meyer-Fernandes, J. R., Saad-Nehme, J., Peres-Sampaio, C. E., Belmont-Firpo, R., Bisaggio, D. F., Do Couto, L. C., Fonseca De Souza, A. L. F., Lopes, A. H. and Souto-Padron, T. (2004). A Mg-dependent ecto-ATPase is increased in the infective stages of Trypanosoma cruzi. Parasitology Research 93, 4150.CrossRefGoogle ScholarPubMed
Moreira, O. C., Rios, P. F. and Barrabin, H. (2005). Inhibition of plasma membrane Ca(2+)-ATPase by CrATP. LaATP but not CrATP stabilizes the Ca(2+)-occluded state. Biochimica et Biophysica Acta 1708, 411419.CrossRefGoogle Scholar
Nakaar, V., Beckers, C. J., Polotsky, V. and Joiner, K. A. (1998). Basis for substrate specificity of the Toxoplasma gondii nucleoside triphosphate hydrolase. Molecular and Biochemichal Parasitology 97, 209220.CrossRefGoogle ScholarPubMed
Pauls, H., Bredenbröcker, B. and Schoner, W. (1980). Inactivation of (Na++K+)-ATPase by chromium(III) complexes of nucleotide triphosphates. European Journal of Biochemistry 109, 523533.CrossRefGoogle ScholarPubMed
Plesner, L. (1995). Ecto-ATPases: identities and functions. International Review of Cytology 158, 141214.CrossRefGoogle ScholarPubMed
Raushel, F. M. and Cleland, W. W. (1977). Bovine liver fructokinase: purification and kinetic properties. Biochemistry 16, 21692175.CrossRefGoogle ScholarPubMed
Redman, C. A., Schineider, P., Mehlert, A. and Ferguson, A. J. (1995). The glycoinositol-phospholipids of Phytomonas. The Biochemical Journal 311, 495503.CrossRefGoogle ScholarPubMed
Robson, S. C., Sévigay, J. and Zimmermann, H. (2006). The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2, 409430.CrossRefGoogle ScholarPubMed
Serpersu, E. H., Summitt, L. L. and Gregory, J. D. (1992). Inactivation of yeast phosphoglycerate kinase by Cr-ATP complexes and its implications on the conformation of the enzyme active site. Journal of Inorganic Biochemistry 4, 203215.CrossRefGoogle Scholar
Smith, T. M. Jr., Kirley, T. L. and Hennessey, T. M. (1997). A soluble ecto-ATPase from Tetrahymena thermophila: purification and similarity to the membrane-bound ecto-ATPase of smooth muscle. Archives of Biochemistry and Biophysics 337, 351359.CrossRefGoogle Scholar
Soares de Medeiros, L. C. A., Moreira, B. L. M., Kildare, M., de Souza, W., Plattner, H., Hentschel, J. and Barrabin, H. (2005). A proton pumping pyrophosphatase in acidocalcisomes of Herpetomonas sp. Molecular and Biochemical Parasitology 140, 175182.CrossRefGoogle Scholar
Stout, J. G. and Kirley, T. L. (1996). Control of cell membrane ecto-ATPase by oligomerization state: intermolecular cross-linking modulates ATPase activity. Biochemistry 35, 82898298.CrossRefGoogle ScholarPubMed
Vilsen, B. (1995). Structure-function relationships in the Ca(2+)-ATPase of sarcoplasmic reticulum studied by use of the substrate analogue CrATP and site-directed mutagenesis. Comparison with the Na+,K(+)-ATPase. Acta Physiologica Scandinavica. Supplementum. 624, 1146.Google ScholarPubMed
Vilsen, B. and Andersen, J. P. (1992). CrATP-induced Ca2+ occlusion in mutants of the Ca(2+)-ATPase of sarcoplasmic reticulum. Journal of Biological Chemistry 26, 2573925743.CrossRefGoogle Scholar
Walseth, T. F. and Johnson, R. A. (1979). The enzymatic preparation of [alpha-32P]nucleoside triphosphates, cyclic [32P] AMP, and cyclic [32P] GMP. Biochimica et Biophysica Acta 562, 1131.CrossRefGoogle Scholar
Wang, T. F., Ou, I. and Guidotti, G. (1998). The transmembrane domains of ectoapyrase (CD39) affect its enzymatic activity and quaternary structure. Journal of Biological Chemistry 273, 2481424821.CrossRefGoogle ScholarPubMed
World Health Organization (2002). Control of Chagas' Disease. WHO Technical Report Series No. 905, 1–109. World Health Organization, Geneva.Google Scholar
Zimmermann, H. (1999). Two novel families of ectonucleotidases: molecular structures, catalytic properties and a search for function. Trends in Pharmacological Science 20, 231236.CrossRefGoogle Scholar