Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T20:24:20.513Z Has data issue: false hasContentIssue false

Conserved peptide sequences bind to actin and enolase on the surface of Plasmodium berghei ookinetes

Published online by Cambridge University Press:  05 August 2011

J. HERNÁNDEZ-ROMANO
Affiliation:
Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad No. 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, CP62508México Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566, Col. Lomas del Texcal, Jiutepec, Morelos CP62550México
M. H. RODRÍGUEZ
Affiliation:
Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad No. 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, CP62508México
V. PANDO
Affiliation:
Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad No. 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, CP62508México
J. A. TORRES-MONZÓN
Affiliation:
Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, 4a. Av. Norte y 19 calle Poniente, Tapachula, Chiapas CP30700México
A. ALVARADO-DELGADO
Affiliation:
Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad No. 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, CP62508México
A. N. LECONA VALERA
Affiliation:
Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad No. 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, CP62508México
R. ARGOTTE RAMOS
Affiliation:
Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad No. 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, CP62508México
J. MARTÍNEZ-BARNETCHE
Affiliation:
Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad No. 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, CP62508México
M. C. RODRÍGUEZ*
Affiliation:
Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad No. 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, CP62508México
*
*Corresponding author: Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad No. 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, CP62508México. Tel: +52 777 3293075. Fax: +52 777 3175485. E-mail: [email protected]; [email protected]

Summary

The description of Plasmodium ookinete surface proteins and their participation in the complex process of mosquito midgut invasion is still incomplete. In this study, using phage display, a consensus peptide sequence (PWWP) was identified in phages that bound to the Plasmodium berghei ookinete surface and, in selected phages, bound to actin and enolase in overlay assays with ookinete protein extracts. Actin was localized on the surface of fresh live ookinetes by immunofluorescence and electron microscopy using specific antibodies. The overall results indicated that enolase and actin can be located on the surface of ookinetes, and suggest that they could participate in Plasmodium invasion of the mosquito midgut.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adini, A. and Warburg, A. (1999). Interaction of Plasmodium gallinaceum ookinetes and oocysts with extracellular matrix proteins. Parasitology 119, 331336.CrossRefGoogle ScholarPubMed
Arrighi, R. B., Ebikeme, C., Jiang, Y., Ranford-Cartwright, L., Barrett, M. P., Langel, U. and Faye, I. (2008). Cell-penetrating peptide TP10 shows broad- spectrum activity against both Plasmodium falciparum and Trypanosoma brucei brucei. Antimicrobial Agents and Chemotherapy 52, 34143417.CrossRefGoogle ScholarPubMed
Baum, J., Richard, D., Healer, J., Rug, M., Krnajski, Z., Gilberger, T. W., Green, J. L., Holder, A. A. and Cowman, A. F. (2006). A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites. Journal of Biological Chemistry 281, 51975208.CrossRefGoogle ScholarPubMed
Bergmann, S., Rohde, M., Chhatwal, G. S. and Hammerschmidt, S. (2001). Alpha- Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Molecular Microbiology 40, 12731287.CrossRefGoogle ScholarPubMed
Buscaglia, C. A., Coppens, I., Hol, W. G. J. and Nussenzweig, V. (2003). Sites of interaction between aldolase and Trombospondin-related anonymous protein in Plasmodium. Molecular Biology of the Cell 14, 49474957.CrossRefGoogle ScholarPubMed
Cody, R. L. and Wicha, M. S. (1986). Clustering of cell surface laminin enhances its association with the cytoskeleton. Experimental Cell Research 165, 107116.CrossRefGoogle ScholarPubMed
Crawford, A. W., Michelsen, J. M. and Beckerle, M. C. (1992). An interaction between zyxin and alfa-actinin. Journal of Cell Biology 116, 13811393.CrossRefGoogle Scholar
Daher, W. and Soldati, D. (2009). Mechanisms controlling glideosome function in apicomplexans. Current Opinion in Microbiology 12, 408414.CrossRefGoogle ScholarPubMed
Dessens, J. T., Beetsma, A. L., Dimopoulus, G., Wengelnick, K., Crisanti, A., Kafatos, F. C. and Sinden, R. E. (1999). CTRP is essential for mosquito infection by malaria ookinetes. European Molecular Biology Organization Journal 18, 62216227.CrossRefGoogle ScholarPubMed
Dessens, J. T., Sidén-Kiamos, I., Mendoza, J., Mahairaki, V., Khater, E., Vlachou, D., Xu, X. J., Kafatos, F. C., Louis, C., Dimopoulos, G. and Sinden, R. E. (2003). SOAP, a novel malaria ookinete protein involved in mosquito midgut invasion and oocyst development. Molecular Microbiology 49, 319329.CrossRefGoogle ScholarPubMed
Fowler, R. E., Margos, G. and Mitchell, G. H. (2004). The cytoskeleton and motility in apicomplexan invasion. Advances in Parasitology 56, 213263.CrossRefGoogle ScholarPubMed
Ganter, M., Schüler, H. and Matuschewski, K. (2009). Vital role for the Plasmodium actin capping protein (CP) beta subunit in motility of malaria sporozoites. Molecular Microbiology 74, 13561367.CrossRefGoogle ScholarPubMed
Geysen, H. M., Barteling, S. J. and Meloen, R. H. (1985). Small peptides induce antibodies with a sequence and structural requirement for binding antigen comparable to antibodies raised against the native protein. Proceedings of the National Academy of Sciences, USA 82, 178182.CrossRefGoogle ScholarPubMed
Gong, Y., Hart, E., Shchurin, A. and Hoover-Plow, J. (2008). Inflammatory macrophage migration requires MM-9 activation by plasminogen in mice. Journal of Clinical Investigation 118, 30123024.CrossRefGoogle Scholar
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hirai, M., Arai, M., Kawai, S. and Matsuoka, H. (2006). PbGCbeta is essential for Plasmodium ookinete motility to invade midgut cell and for successful completion of parasite life cycle in mosquitoes. Journal of Biochemistry 140, 747757.CrossRefGoogle ScholarPubMed
Hofmann, K. and Stoffel, W. (1993). TMbase: a database of membrane spanning protein segments. Biological Chemistry Hoppe Seyler 347, 166171.Google Scholar
Huber, M., Cabib, E. and Miller, L. H. (1991). Malaria parasite chitinase and penetration of the mosquito peritrophic membrane. Proceedings of the National Academy of Sciences, USA 88, 28072810.Google ScholarPubMed
Jewett, T. J. and Sibley, L. D. (2003). Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Molecular Cell 11, 885894.CrossRefGoogle ScholarPubMed
Kadota, K., Ishino, T., Matsuyama, T., Chinzei, Y. and Yuda, M. (2004). Essential role of membrane-attack protein in malarial transmission to mosquito host. Proceedings of the National Academy of Sciences, USA 101, 1631016315.CrossRefGoogle ScholarPubMed
Kappe, S., Bruderer, T., Gantt, S., Fujioka, H., Nussenzweig, H. and Ménard, R. (1999). Conservation of a gliding motility and cell invasion machinery in Apicomplexan parasites. Journal of Cell Biology 147, 937943.CrossRefGoogle ScholarPubMed
Kay, B. K., Williamson, M. P. and Sudol, M. (2000). The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB Journal. 14, 231241.CrossRefGoogle ScholarPubMed
Keeley, A. and Soldati, D. (2004). The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends in Cell Biology 14, 528532.CrossRefGoogle ScholarPubMed
Kikkawa, Y., Sanzen, N., Fujiwara, H., Sonnenberg, A. and Sekiguchi, K. (2000). Integrin binding specificity of laminin-10/11: laminin-10/11 are recognized by alpha 3β1, α6beta 1 and alfa 6 beta 4 integrins. Journal of Cell Sciences 113, 869876.CrossRefGoogle Scholar
Kyte, J. and Doolittle, R. F. (1982). A simple method for displaying the hydrophobic character of a protein. Journal of Molecular Biology 157, 105142.CrossRefGoogle Scholar
Labbé, M., Péroval, M., Bourdieu, C., Girard-Misguich, F. and Péry, P. (2006). Eimeria tenella enolase and pyruvate kinases: A likely role in glycolysis and in other functions. International Journal for Parasitology 36, 14431452.CrossRefGoogle Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, Londoon 227, 680685.CrossRefGoogle ScholarPubMed
Lecona, A., Rodriguez, M. H., Argotte-Ramos, R. S., Alvarado-Delgado, A. and Rodriguez, M. C. (2010). Plasmodium berghei ookinetes glide and release Pbs25 and CTRP on solid surface substrates. Journal of Parasitology 96, 216218.CrossRefGoogle Scholar
Limviroj, W., Yano, K., Yuda, M., Ando, K. and Chinzei, Y. (2002). Immuno-electron microscopic observation of Plasmodium berghei CTRP localization in the midgut of the vector mosquito Anopheles stephensi. Journal of Parasitology 88, 664672.CrossRefGoogle ScholarPubMed
Liu, D. Y., Clarke, G. N. and Baker, H. W. (2005). Exposure of actin on the surface of the human sperm head during in vitro culture relates to sperm morphology, capacitation and zona binding. Human Reproduction 20, 9991005.CrossRefGoogle ScholarPubMed
Mahairaki, V., Lycett, G., Sidén-Kiamos, I., Sinden, R. E. and Louis, C. (2005). Close association of invading Plasmodium berghei and β integrin in the Anopheles gambiae midgut. Archives of Insect Biochemistry and Physiology 60, 1319.CrossRefGoogle ScholarPubMed
Mahairaki, V., Voyatzi, T., Siden-Kiamos, I. and Louis, C. (2001). The Anopheles gambiae gamma 1 laminin directly binds the Plasmodium berghei circumsporozoite- and TRAP- related protein (CTRP). Molecular and Biochemical Parasitology 140, 119121.CrossRefGoogle Scholar
Margos, G., Sidén-Kiamos, I., Fowler, R. E., Gillman, T. R., Spaccapelo, R., Lycett, G., Vlachou, D., Papagiannakis, G., Eling, W. M., Mitchell, G. H. and Louis, C. (2000). Myosin A expressions in sporogonic stages of Plasmodium. Molecular and Biochemical Parasitology 111, 465469.CrossRefGoogle ScholarPubMed
Ménard, R. (2001). Gliding motility and cell invasion by Apicomplexa: insights from the Plasmodium sporozoite. Cell Microbiology 3, 6373.CrossRefGoogle ScholarPubMed
Moroianu, J., Fett, J. W., Riordan, J. F. and Vallee, B. L. (1993). Actin is a surface component of calf pulmonary artery endothelial cells in culture. Proceedings of the National Academy of Sciences, USA 90, 38153819.CrossRefGoogle ScholarPubMed
Nacer, A., Underhill, A. and Hurd, H. (2008). The microneme proteins CTRP and SOAP are not essential for Plasmodium berghei ookinete to oocyst transformation in vitro in a cell free system. Malaria Journal 7, 82. doi:10.1186/1475-2875-7-82.CrossRefGoogle ScholarPubMed
Naitza, S., Spano, F., Robson, K. J. H. and Crisanti, A. (1998). The thrombospondin- related protein family of Apicomplexan parasites. The gears of the cell invasion machinery. Parasitology Today 14, 479484.CrossRefGoogle ScholarPubMed
O'Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry 250, 40074021.CrossRefGoogle ScholarPubMed
Pal-Bhowmick, I., Mehta, M., Coppens, I., Sharma, S. and Jarori, G. K. (2007 a). Protective properties and surface localization of Plasmodium falciparum enolase. Infection and Immunity 75, 55005508.CrossRefGoogle ScholarPubMed
Pal-Bhowmick, I., Vora, H. K. and Jarori, G. K. (2007 b). Sub-cellular localization and post-translational modifications of the Plasmodium yoelii enolase suggest moonlighting functions. Malaria Journal 6, 45.CrossRefGoogle ScholarPubMed
Pancholi, V. (2001). Multifunctional alpha-enolase: its role in diseases. Cellular Molecular Life Sciences 58, 902920.CrossRefGoogle ScholarPubMed
Pancholi, V. and Fischetti, V. A. (1998). Αlpha enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococi. The Journal of Biological Chemistry 273, 1450314515.CrossRefGoogle Scholar
Pitarch, A., Jimenez, A., Nombela, C. and Gil, C. (2006). Decoding serological response to Candida cell wall immunome into novel diagnostic, prognostic, and therapeutic candidates for systemic candidiasis by proteomic and bioinformatics analyses. Molecular Cell Proteomics 5, 7996.CrossRefGoogle Scholar
Rodriguez, M. C., Gerold, P., Dessens, J., Kurtenbach, K., Schwartz, R. T., Sinden, R. E. and Margos, G. (2000). Characterisation and expression of pbs25, a sexual and sporogonic stage specific protein of Plasmodium berghei. Molecular and Biochemical Parasitology 110, 147159.CrossRefGoogle Scholar
Rodríguez, M. C., Margos, G., Compton, H., Ku, M., Lanz, H., Rodríguez, M. H. and Sinden, R. E. (2002). Plasmodium berghei: routine production of pure gametocytes, extracellular gametes, zygotes, and ookinetes. Experimental Parasitology 101, 7376.CrossRefGoogle ScholarPubMed
Shen, Z. and Jacobs-Lorena, M. (1998). A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. Journal of Biological Chemistry 273, 1766517670.CrossRefGoogle ScholarPubMed
Siden-Kiamos, I., Ecker, A., Nyback, S., Louis, C., Sinden, R. E. and Billker, O. (2006). Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion. Molecular Microbiology 60, 13551363.CrossRefGoogle ScholarPubMed
Siden-Kiamos, I., Vlachou, D., Margos, G., Beetsma, A., Waters, A. P., Sinden, R. E. and Louis, C. (2000). Distinct roles for Pbs21 and Pbs25 in the in vitro ookinete to oocyst transformation of Plasmodium berghei. Journal of Cell Science 113, 34193426.CrossRefGoogle ScholarPubMed
Sinden, R. E. (1999). Plasmodium differentiation in the mosquito. Parassitologia 41, 139148.Google ScholarPubMed
Smalheiser, N. R. (1996). Proteins in unexpected locations. Molecular Biology of the Cell 7, 10031014.CrossRefGoogle ScholarPubMed
Soldati-Favre, D. (2008). Molecular dissection of host cell invasion by apicomplexans: the glideosome. Parasite 15, 197205.CrossRefGoogle ScholarPubMed
Sonnenberg, A. (1993). Integrins and their ligands. Current topics in Microbiology and Immunology 184, 735.Google ScholarPubMed
Sonnhammer, E. L. L., von Heijne, G. and Krogh, A. (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. In Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology (ed. Glasgow, J., Littlejohn, T., Major, F., Lathrop, R., Sankoff, D. and Sensen, C.), pp. 175182. AAAI Press, Menlo Park, CA, USA.Google Scholar
Stec, I., Nagl, S. B., van Ommen, G. B. and den Dunnen, J. T. (2000). The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Letters 473, 15.CrossRefGoogle Scholar
Templeton, T. J., Kaslow, D. C. and Fidock, D. A. (2000). Developmental arrest of the human malaria parasite Plasmodium falciparum within the mosquito midgut via CTRP gene disruption. Molecular Microbiology 36, 19.CrossRefGoogle ScholarPubMed
Tomley, F. M. and Soldati, D. S. (2001). Mix and match modules: structure and function of microneme proteins in apicomplexan parasites. Trends in Parasitology 17, 8188.CrossRefGoogle ScholarPubMed
Towbin, H., Staehelin, T. and Gordin, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350–354.CrossRefGoogle ScholarPubMed
Tremp, A. Z., Khater, E. I. and Dessens, J. T. (2008). IMC1b is a putative membrane skeleton protein involved in cell shape, mechanical strength, motility, and infectivity of malaria ookinetes. Journal of Biological Chemistry 283, 2760427611.CrossRefGoogle ScholarPubMed
Tsuboi, T., Cao, Y., Kaslow, D. C., Shiwaku, K. and Torii, M. (1997). Primary structure of a novel ookinete surface protein from Plasmodium berghei. Molecular and Biochemical Parasitology 85, 131134.CrossRefGoogle ScholarPubMed
Varma, M. G. R. and Pudney, M. (1969). The growth and serial passage of cell lines from Aedes aegypti (L) larvae in different media. Journal of Medical Entomology 6, 432439.CrossRefGoogle ScholarPubMed
Vlachou, D., Lycett, G., Sidén-Kiamos, I., Blass, C., Sinden, R. E. and Louis, C. (2001). Anopheles gambiae laminin interacts with the P25 surface protein of Plasmodium berghei ookinetes. Molecular and Biochemical Parasitology 112, 229237.CrossRefGoogle ScholarPubMed
Wetzel, D. M., Håkansson, S., Hu, K., Roos, D. and Sibley, L. D. (2003). Actin filament polymerization regulates gliding motility by apicomplexan parasites. Molecular Biology of the Cell 14, 396406.CrossRefGoogle ScholarPubMed
Winger, L. A., Tirawanchai, N., Nicholas, J., Carter, H. E., Smith, J. E. and Sinden, R. E. (1988). Ookinete antigens of Plasmodium berghei. Appearance on the zygote surface of an Mr 21 kD determinant identified by transmission-blocking monoclonal antibodies. Parasite Immunology 10, 193207.CrossRefGoogle Scholar
Yuda, M., Sawai, T. and Chinzei, Y. (1999). Structure and expression of an adhesive protein- like molecule of mosquito invasive-stage malarial parasite. Journal of Experimental Medicine 189, 19471952.CrossRefGoogle ScholarPubMed
Yuda, M., Yano, K., Tsuboi, T., Torii, M. and Chinzei, Y. (2001). von Willebrand factor A domain-Related Protein, a novel microneme protein of the malaria ookinete highly conserved throughout Plasmodium parasites. Molecular and Biochemical Parasitology 116, 6572.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Hernandez-Romano Supplementary Image 1

Hernandez-Romano Supplementary Image 1

Download Hernandez-Romano Supplementary Image 1(Image)
Image 588.8 KB
Supplementary material: Image

Hernandez-Romano Supplementary Image 2

Hernandez-Romano Supplementary Image 2

Download Hernandez-Romano Supplementary Image 2(Image)
Image 213.5 KB