Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T18:08:18.978Z Has data issue: false hasContentIssue false

A comprehensive analysis of the biogeography of the thelastomatoid pinworms from Australian burrowing cockroaches (Blaberidae: Geoscapheinae, Panesthiinae): no evidence of coevolution

Published online by Cambridge University Press:  24 April 2007

A. R. JEX*
Affiliation:
School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
M. A. SCHNEIDER
Affiliation:
School of Integrative Biology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
H. A. ROSE
Affiliation:
School of Land, Water and Crop Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
T. H. CRIBB
Affiliation:
School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
*
*Corresponding author: Department of Veterinary Science, The University of Melbourne, Victoria 3030, Australia. Tel: +61 3 9731 2294. Fax: +61 3 9731 2000. E-mail: [email protected]

Summary

We report 21 thelastomatoid species parasitizing 31 described and 5 undescribed geoscapheine and panesthiine cockroaches, representing all but 1 of the known species of these subfamilies in Australia. The nematodes have 3 distinct patterns of host distribution: dominant, moderate and rare. The 4 dominant species, Cordonicola gibsoni, Leidynemella fusiformis, Travassosinema jaidenae and Aoruroides queenslandensis, are highly prevalent, found in nearly all host species examined, and broadly distributed. The 8 moderate species have lower prevalences but are still widely distributed. Many of these species are more common in one host subfamily than the other. The remaining 9 rare species have highly restricted host and geographical distributions. Six of the 21 species are exclusive to geoscapheines, 5 to panesthiines and 10 are shared. These patterns suggest that most of the reported thelastomatoid species are generalists rather than specialists, that host-specificity within this group is low and that co-evolutionary speciation has had little, if any, impact on structuring the thelastomatoid fauna of Australian burrowing cockroaches. In a broader context, this study provides the first comprehensive examination of the role of coevolutionary speciation and host specificity in regulating the distribution of pinworms in arthropods.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adamson, M. L. (1987). Oxyuridan (Nematoda) parasites of Scaphiostreptus seychellarum with comments on the families Pulchrocephalidae Kloss, 1959 and Travassosinematidae Rao, 1958. Canadian Journal of Zoology 65, 27472754.CrossRefGoogle Scholar
Adamson, M. L. (1989). Evolutionary biology of the Oxyurida (Nematoda): Biofacies of a haplodiploid taxon. Advances in Parasitology 28, 175228.CrossRefGoogle ScholarPubMed
Adamson, M. L. and Noble, H. (1992). Structure of the pinworm (Oxyurida: Nematoda) guild in the hindgut of the American cockroach, Periplaneta americana. Parasitology 104, 497507.CrossRefGoogle ScholarPubMed
Adamson, M. L. and Noble, H. (1993). Interspecific and intraspecific competition among pinworms in the hindgut of Periplaneta americana. Journal of Parasitology 79, 5056.CrossRefGoogle Scholar
Adamson, M. L. and van Waerebeke, D. (1992). Revision of the Thelastomatoidea, Oxyurida of invertebrate hosts 1. Thelastomatidae. Systematic Parasitology 21, 2164.CrossRefGoogle Scholar
Brooks, D. R. and Glen, D. R. (1982). Pinworms and primates: a case study in coevolution. Proceedings of the Helminthological Society of Washington 49, 7685.Google Scholar
Burnham, K. P. and Overton, W. S. (1978). Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65, 623633.CrossRefGoogle Scholar
Burnham, K. P. and Overton, W. S. (1979). Robust estimation of population size when capture probabilities vary among animals. Ecology 60, 927936.CrossRefGoogle Scholar
Cameron, T. W. (1929). The species of Enterobius Leach, in Primates. Journal of Helminthology 7, 161182.CrossRefGoogle Scholar
Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783791.CrossRefGoogle ScholarPubMed
Chitwood, B. G. (1932). A synopsis of the nematodes parasitic in insects of the family Blattidae. Zeitschrift für Parasitenkunde 5, 1450.CrossRefGoogle Scholar
Cobb, N. A. (1920). One hundred new nemas (type species of 100 new genera) in Contributions to the Science of Nematology, Waverly Press, Baltimore.Google Scholar
Connor, S. and Adamson, M. (1998). Niche overlap among three species of pinworm parasitic in the hindgut of the American cockroach, Periplaneta americana. Journal of Parasitology 84, 245247.CrossRefGoogle ScholarPubMed
Heltshe, J. and Forrester, N. E. (1983). Estimating species richness using the jackknife procedure. Biometrics 39, 111.CrossRefGoogle ScholarPubMed
Hoberg, E. P. and Lichtenfels, J. R. (1994). Phylogenetic systematic analysis of the Trichostrongylidae (Nematoda), with an initial assessment of coevolution and biogeography. Journal of Parasitology 80, 976996.CrossRefGoogle ScholarPubMed
Hominick, W. M. and Davey, K. G. (1973). Food and the spatial distribution of adult female pinworms parasitic in the hindgut of Periplaneta americana L. International Journal for Parasitology 3, 759771.CrossRefGoogle Scholar
Hugot, J. P. (1998). Phylogeny of neotropical monkeys: the interplay of morphological, molecular, and parasitological data. Molecular Phylogenetics and Evolution 9, 408413.CrossRefGoogle ScholarPubMed
Hugot, J. P. (1999). Primates and their pinworm parasites: the Cameron Hypothesis revisited. Systematic Biology 48, 523546.CrossRefGoogle ScholarPubMed
Hugot, J. P., Gardner, S. L. and Morand, S. (1996). The Enterobiinae subfam. nov. (Nematoda, Oxyurida) pinworm parasites of primates and rodents. International Journal for Parasitology 26, 147159.CrossRefGoogle ScholarPubMed
Hugot, J. P., Gonzalez, J. P. and Denys, C. (2001). Evolution of the old world Arenaviridae and their rodent hosts: generalized host-transfer or association by descent? Infection, Genetics and Evolution 2, 18.Google Scholar
Hunt, D. J. (1993). Two new species of Travassosinema Rao, 1958 (Nematoda: Travassosinematidae) from diplopods in Sulawesi and Papua New Guinea. Afro-Asian Journal of Nematology 3, 196200.Google Scholar
Hunt, D. J. (1996). Travassosinema thyropygi sp. n. (Nematoda: Travassosinematidae) from a spirobolid millipede from Vietnam with SEM observations on Heth imias (Nematoda: Hethidae). Fundamental and Applied Nematology 19, 714.Google Scholar
Jarry, D. T. (1964). Les Oxyurides de quelques arthropodes dans le midi de la France. Annales de Parasitologie Humaine et Comparée 39, 381508.CrossRefGoogle Scholar
Jex, A. R., Cribb, T. H. and Schneider, M. A. (2004). Aoruroides queenslandensis n. sp. (Oxyurida: Thelastomatoidea), a new nematode from Australian Panesthiinae (Blattodea: Blaberidae). Systematic Parasitology 59, 6569.CrossRefGoogle Scholar
Jex, A. R., Schneider, M. A. and Cribb, T. H. (2006 a). The importance of host ecology in thelastomatoid (Nematoda: Oxyurida) specificity. Parasitology International 55, 169174.CrossRefGoogle ScholarPubMed
Jex, A. R., Schneider, M. A., Rose, H. A. and Cribb, T. H. (2005). The Thelastomatoidea (Nematoda: Oxyurida) of two sympatric Panesthiinae (Blattodea) from south-eastern Queensland, Australia: taxonomy, species richness and host specificity. Nematology 7, 543575.Google Scholar
Jex, A. R., Schneider, M. A., Rose, H. A. and Cribb, T. H. (2006 b). New Thelastomatoidea (Nematoda: Oxyurida) from Australian burrowing cockroaches (Blaberidae: Geoscapheinae, Panesthiinae). Nematology 8, 443454.CrossRefGoogle Scholar
Jex, A. R., Schneider, M. A., Rose, H. A. and Cribb, T. H. (2006 c). Thelastomatoidea (Nematoda: Oxyurida) of the Australian giant burrowing cockroach, Macropanesthia rhinoceros (Blattodea: Geoscapheinae). Nematology 8, 347357.CrossRefGoogle Scholar
Jex, A. R., Schneider, M. A., Rose, H. A. and Cribb, T. H. (2007). Local climate aridity very important factor in structuring thelastomatoid communities in widely distributed arthropods. Parasitology (This issue).Google Scholar
Maekawa, K., Lo, N., Rose, H. A. and Matsumoto, T. (2003). The evolution of soil-burrowing cockroaches (Blattaria: Blaberidae) from wood-burrowing ancestors following an invasion of the latter from Asia into Australia. Proceedings of the Royal Society of London, B 270, 13011307.CrossRefGoogle ScholarPubMed
Matsumoto, T. (1988). Colony composition of the wood-feeding cockroach Panesthia australis Brunne (Blattaria, Blaberidae, Panesthiinae) in Australia. Zoological Science 5, 11451148.Google Scholar
Matsumoto, T. (1992). Familial association, nymphal development and population density in the Australian giant burrowing cockroach, Macropanesthia rhinoceros (Blattaria: Blaberidae). Zoological Science 9, 835842.Google Scholar
O'Neill, S. L., Rose, H. A. and Rugg, D. (1987). Social behaviour and its relationship to field distribution of Panesthia cribrata Saussure (Blattodea: Blaberidae). Journal of the Australia Entomological Society 26, 313321.CrossRefGoogle Scholar
Post, R. J. and Millest, A. L. (1991). Sample size in parasitological and vector surveys. Parasitology Today 7, 141.CrossRefGoogle ScholarPubMed
Poulin, R. (1998). Comparison of three estimators of species richness in parasite component communities. Journal of Parasitology 84, 485490.CrossRefGoogle ScholarPubMed
Roth, L. M. (1977). A taxonomic revision of the Panesthiinae of the world I: The Panesthiinae of Australia (Dictyoptera: Blattodea: Blaberidae). Australian Journal of Zoology Supplementary Series No. 48, 1112.Google Scholar
Roth, L. M. (1982). A taxonomic review of the Panesthiinae of the world IV. The genus Ancaudellia Shaw, with additions to parts I-III, and a general discussion of distribution and relationships of the components of the subfamily (Dictyoptera: Blattaria: Blaberidae). Australian Journal of Entomology S82, 1142.Google Scholar
Rugg, D. and Rose, H. A. (1991). Biology of Macropanesthia rhinoceros Saussure (Dictyoptera: Blaberidae). Entomological Society of America 84, 576582.Google Scholar
Smith, E. P. and van Belle, G. (1984). Nonparametric estimation of species richness. Biometrics 40, 119129.CrossRefGoogle Scholar
Sorci, G., Morand, S. and Hugot, J. P. (1997). Host-parasite coevolution: comparative evidence for covariation of life history traits in primates and oxyurid parasites. Proceedings of the Royal Society of London, B 264, 285289.CrossRefGoogle ScholarPubMed
Walker, J. A., Rugg, D. and Rose, H. A. (1994). Nine new species of Geoscapheinae (Blattodea: Blaberidae) from Australia. Memoirs of the Queensland Museum 35, 263284.Google Scholar
Walther, B. A. and Morand, S. (1998). Comparative performance of species richness estimation methods. Parasitology 116, 395405.CrossRefGoogle ScholarPubMed