Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T14:26:43.583Z Has data issue: false hasContentIssue false

Complete sporogony of the blood parasite Haemoproteus nucleocondensus in common biting midges: why is its transmission interrupted in Europe?

Published online by Cambridge University Press:  29 January 2020

Rita Žiegytė*
Affiliation:
Nature Research Centre, Akademijos 2, Vilnius 21, LT-09412, Lithuania
Elena Platonova
Affiliation:
Nature Research Centre, Akademijos 2, Vilnius 21, LT-09412, Lithuania
Rasa Bernotienė
Affiliation:
Nature Research Centre, Akademijos 2, Vilnius 21, LT-09412, Lithuania
Gediminas Valkiūnas
Affiliation:
Nature Research Centre, Akademijos 2, Vilnius 21, LT-09412, Lithuania
Vaidas Palinauskas*
Affiliation:
Nature Research Centre, Akademijos 2, Vilnius 21, LT-09412, Lithuania
*
Author for correspondence: Rita Žiegytė, E-mail: [email protected] and Vaidas Palinauskas, E-mail: [email protected]
Author for correspondence: Rita Žiegytė, E-mail: [email protected] and Vaidas Palinauskas, E-mail: [email protected]

Abstract

Haemoproteus species (Haemoproteidae) are widespread blood parasites and are transmitted by Culicoides biting midges and Hippoboscidae louse flies. Although these pathogens may cause morbidity or mortality, the vectors and patterns of transmission remain unknown for the great majority of avian haemoproteids. Haemoproteus nucleocondensus has been frequently reported in Europe in great reed warblers Acrocephalus arundinaceus after their arrival from African wintering grounds, but this infection has not been found in juveniles at the breeding sites. The factors that prevent its transmission remain unclear. This study was designed to test whether the sporogony of H. nucleocondensus (lineage hGRW8) can be completed in Culicoides impunctatus, one of the most abundant European biting midge species. Wild-caught females were infected with H. nucleocondensus from great reed warblers. Microscopic examination and PCR-based methods were used to detect sporogonic stages and to confirm species identity. This study showed that H. nucleocondensus completes sporogony in C. impunctatus, suggesting that there are no obstacles to its transmission from the point of view of vector availability and average temperature in Northern Europe. We discuss other ecological factors which should be considered to explain why the transmission of H. nucleocondensus and some other Southern origin haemosporidians are interrupted in North Europe.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, CT (1991) Vectors, epizootiology, and pathogenicity of avian species of Haemoproteus (Haemosporina: Haemoproteidae). Bulletin of the Society for Vector Ecology 16, 109126.Google Scholar
Atkinson, CT, Thomas, NJ and Hunter, DB (2008) Parasitic Diseases of Wild Birds. Oxford: Wiley-Blackwell.10.1002/9780813804620CrossRefGoogle Scholar
Bensch, S, Stjenman, M, Hasselquist, D, Ostman, O, Hansson, B, Westerdahl, H and Pinheiro, RT (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society 276, 15831589.10.1098/rspb.2000.1181CrossRefGoogle Scholar
Bensch, S, Hellgren, O and Perez-Tris, J (2009) A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b Lineages. Molecular Ecology Resources 9, 13531358.10.1111/j.1755-0998.2009.02692.xCrossRefGoogle ScholarPubMed
Bensch, S, Jönsson, J and Copete, JL (2011) Low prevalence of Haemoproteus infections in Chiffchaffs. Parasitology 139, 302309.10.1017/S0031182011002009CrossRefGoogle ScholarPubMed
Bensch, S, Canbäck, B, DeBarry, JD, Johansson, T, Hellgren, O, Kissinger, JC, Palinauskas, V, Videvall, E and Valkiūnas, G (2016) The genome of Haemoproteus Tartakovskyi and its relationship to human malaria parasites. Genome Biolply and Evolution 8, 13611373.10.1093/gbe/evw081CrossRefGoogle ScholarPubMed
Bukauskaitė, D, Iezhova, TA, Ilgūnas, M and Valkiūnas, G (2019) High susceptibility of the laboratory-reared biting midges Culicoides Nubeculosus to Haemoproteus Infections, with review on Culicoides species that transmit avian haemoproteids. Parasitology 146, 333341.10.1017/S0031182018001373CrossRefGoogle ScholarPubMed
Cannell, BL, Krasnec, KV, Campbell, K, Jones, HI, Miller, RD and Stephens, N (2013) The pathology and pathogenicity of a novel Haemoproteus Spp. infection in wild little penguins (Eudyptula minor). Veterinary Parasitology 197, 7484.10.1016/j.vetpar.2013.04.025CrossRefGoogle Scholar
Cardona, CJ, Ihejirika, A and McClellan, L (2002) Haemoproteus lophortyx infection in bobwhite quail. Avian Diseases 46, 249255.10.1637/0005-2086(2002)046[0249:HLIIBQ]2.0.CO;2CrossRefGoogle ScholarPubMed
Carpenter, S, Groschup, MH, Garros, C, Felippe-Bauer, ML and Purse, B (2013) Culicoides biting midges, arboviruses and public health in Europe. Antiviral Research 100, 102113.10.1016/j.antiviral.2013.07.020CrossRefGoogle ScholarPubMed
Chagas, CRF, Bukauskaitė, D, Ilgūnas, M, Bernotienė, R, Iezhova, T and Valkiūnas, G (2019) Sporogony of four Haemoproteus species (Haemosporida: Haemoproteidae), with report of in Vitro ookinetes of Haemoproteus Hirundinis: phylogenetic inference indicates patterns of haemosporidian parasite ookinete development. Parasites & Vectors 12, 422.CrossRefGoogle ScholarPubMed
Clark, NJ, Clegg, SM and Lima, MR (2014) A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data. International Journal for Parasitology 44, 329338.10.1016/j.ijpara.2014.01.004CrossRefGoogle ScholarPubMed
Darriba, D, Taboada, GL, Doallo, R and Posada, D (2012) Jmodeltest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.10.1038/nmeth.2109CrossRefGoogle ScholarPubMed
Dimitrov, D, Zehtindjiev, P and Bensch, S (2010) Genetic diversity of avian blood parasites in SE Europe: cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Bulgaria. Acta Parasitologica 3, 201209.Google Scholar
Donovan, TA, Schrenzel, M, Tucker, TA, Pessier, AP and Stalis, IH (2008) Hepatic hemorrhage, hemocoelom, and sudden death due to Haemoproteus infection in passerine birds: eleven cases. Journal of Veterinary Diagnostics Investigation 20, 304313.10.1177/104063870802000307CrossRefGoogle ScholarPubMed
Folmer, O, Black, M, Hoeh, W, Lutz, R and Vrijenhoek, R (1994) DNA Primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology Biotechnology 3, 294299.Google ScholarPubMed
Fuller, T, Bensch, S, Müller, I, Novembre, J, Pérez-Tris, J, Ricklefs, RE, Smith, TB and Waldenström, J (2012) The ecology of emerging infectious diseases in migratory birds: an assessment of the role of climate change and priorities for future research. EcoHealth 9, 8088.10.1007/s10393-012-0750-1CrossRefGoogle ScholarPubMed
Garnham, PCC (1966) Malaria Parasites and Other Haemosporidia. Oxford: Blackwell Scientific Publications Ltd.Google Scholar
Garvin, MC and Greiner, EC (2003) Ecology of Culicoides (Diptera: Ceratopogonidae) in south central Florida and experimental Culicoides vectors of the avian hematozoan Haemoproteus danilewskyi kruse. Journal of Wildlife Diseases 39, 170178.10.7589/0090-3558-39.1.170CrossRefGoogle Scholar
Glukhova, VM and Valkiūnas, G (1993) On the fauna and ecology of biting midges (Ceratopogonidae: Culicoides) in the Curonian spit, the methods of their collection from the birds and experimental infection with haemoproteids (Haemosporidia: Haemoproteidae). Ekologija 2, 6873.Google Scholar
Godfrey, RD, Fedynich, AM and Pence, DB (1987) Quantification of hematozoa in blood smears. Journal of Wildlife Diseases 23, 558565.10.7589/0090-3558-23.4.558CrossRefGoogle ScholarPubMed
Groff, TC, Lorenz, TJ, Crespoc, R, Iezhova, T, Valkiūnas, G and Sehgal, RNM (2019) Haemoproteosis lethality in a woodpecker, with molecular and morphological characterization of Haemoproteus Velans (Haemosporida, Haemoproteidae). International Journal for Parasitology: Parasites and Wildlife 10, 93100.Google Scholar
Guindon, S and Gascuel, O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.10.1080/10635150390235520CrossRefGoogle ScholarPubMed
Gutsevich, AV (1973) The bloodsucking midges (Ceratopogonidae), in the fauna of the USSR. Dipteran insects. Nauka 3, 269. (In Russian).Google Scholar
Hammers, M, Komdeur, J, Kingma, SA, Hutchings, K, Fairfield, EA, Gilroy, DL and Richardson, DS (2016) Age-specific haemosporidian infection dynamics and survival in Seychelles warblers. Scientific Reports 6, 29720.10.1038/srep29720CrossRefGoogle ScholarPubMed
Hasselquist, D, Östman, Ö, Waldenström, J and Bensch, S (2007) Temporal patterns of occurrence and transmission of the blood parasite Haemoproteus Payevskyi in the great reed warbler Acrocephalus arundinaceus. Journal of Ornithology 148, 401409.10.1007/s10336-007-0144-2CrossRefGoogle Scholar
Hellgren, O, Waldenstrom, J and Bensch, S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. Journal of Parasitology 90, 797802.10.1645/GE-184R1CrossRefGoogle ScholarPubMed
Ilgūnas, M, Bukauskaitė, D, Palinauskas, V, Iezhova, TA, Dinhopl, N, Nedorost, N, Weissenbacher-Lang, C, Weissenbock, H and Valkiūnas, G (2016) Mortality and pathology in birds due to Plasmodium (Giovannolaia) homocircumflexum infection, with emphasis on the exoerythrocytic development of avian malaria parasites. Malaria Journal 15, 256.CrossRefGoogle ScholarPubMed
Ivanova, K, Zehtindjiev, P, Mariaux, J and Georgiev, BB (2015) Genetic diversity of avian haemosporidians in Malaysia: cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Selangor. Infection, Genetics and Evolution 31, 3339.10.1016/j.meegid.2015.01.004CrossRefGoogle ScholarPubMed
Jia, T, Valkiūnas, G, Yang, MH, Zheng, CM, Pu, TC, Zhang, YY, Dong, L, Suo, X and Zhang, CL (2018) Malaria parasites and related haemosporidians cause mortality in cranes: a study on the parasites diversity, prevalence and distribution in Beijing Zoo. Malaria Journal 17, 234.CrossRefGoogle Scholar
Kelly, E, Baldwi, TJ, Frame, DD, Childress, AL and Wellehan, JFX (2018) Haemoproteus (Parahaemoproteus) spp. in captive-bred bobwhite qual (Colinus virginianus) in Southern Utan, USA. Journal of Wildlife Diseases 54, 726733.CrossRefGoogle Scholar
Kettle, DS (1951) The spatial distribution of Culicoides impunctatus Goet under woodland and moorland conditions and its flight range through woodland. Bulletin of Entomological Research 42, 239291.CrossRefGoogle Scholar
Križanauskienė, A, Iezhova, TA, Palinauskas, V, Chernetov, N and Valkiūnas, G (2012) Haemoproteus Nucleocondensus N. sp. (Haemosporida, Haemoproteidae) from a Eurasian songbird, the Great Reed Warbler Acrocephalus arundinaceus. Zootaxa 3441, 3646.CrossRefGoogle Scholar
Liutkevičius, G (2000) The new data on the epidemiology of bird haemoproteids (Haemosporida: Haemoproteidae) on the Curonian Spit. Acta Zoologica Lithuania 2, 7277.CrossRefGoogle Scholar
Marzal, A, Longoria, LG, Callirgos, JMC and Sehgal, RNM (2015) Invasive avian malaria as an emerging parasitic disease in native birds of Peru. Biological Invasions 17, 3945.CrossRefGoogle Scholar
Mathieu, B, Cêtre-Sossah, C, Garros, C, Chavernac, D, Balenghien, T, Carpenter, S, Setier-Rio, ML, Vignes-Lebbe, R, Ung, V, Candolfi, E and Delécolle, JC (2012) Development and validation of IIKC: an interactive identification key for Culicoides (Diptera: Ceratopogonidae) females from the Western Palaearctic region. Parasites & Vectors 5, 137.CrossRefGoogle ScholarPubMed
Miller, MA, Pfeiffer, W and Schwartz, T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE) IEEE, pp. 18.CrossRefGoogle Scholar
Ortiz-Catedral, L, Brunton, D, Stidworth, MF, Elsheikha, HM, Pennycott, T, Schulze, C, Braun, M, Wink, M, Gerlach, H, Pendl, , Gruber, AD, Ewen, J, Perez-Tris, J, Valkiūnas, G and Olias, P (2019) Haemoproteus minutus is highly virulent for Australasian and South American parrots. Parasites & Vectors 12, 40.10.1186/s13071-018-3255-0CrossRefGoogle ScholarPubMed
Outlaw, DC and Ricklefs, RE (2014) Species limits in avian malaria parasites (Haemosporida): how to move forward in the molecular era. Parasitology 141, 12231232.CrossRefGoogle ScholarPubMed
Palinauskas, V, Žiegytė, R, Ilgūnas, M, Iezhova, TA, Bernotienė, R, Bolshakov, C and Valkiūnas, G (2015) Description of the first cryptic avian malaria parasite, Plasmodium Homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes. International Journal for Parasitology: Parasites and Wildlife 45, 5162.CrossRefGoogle ScholarPubMed
Palinauskas, V, Žiegytė, R, Iezhova, TA, Ilgūnas, M, Bernotienė, R and Valkiūnas, G (2016) Description, molecular characterisation, diagnostics and life cycle of Plasmodium elongatum (lineage pERIRUB01), the virulent avian malaria parasite. International Journal for Parasitology: Parasites and Wildlife 46, 697707.CrossRefGoogle Scholar
Pèrez-Tris, J and Bensch, S (2005) Diagnosing genetically diverse avian malarial infections using mixed-sequencing analysis and TA-cloning. Parasitology 131, 1523.CrossRefGoogle ScholarPubMed
Richardson, DS, Jury, FL, Blaakmeer, K, Komdeur, J and Burke, T (2001) Parentage assignment and extra-group paternity in a cooperative breeder: the Seychelles warbler (Acrocephalus sechellensis). Molecular Ecology 10, 22632273.CrossRefGoogle Scholar
Ricklefs, RE, Medeiros, M, Ellis, VA, Svensson-Coelho, M, Blake, JG, Loiselle, BA, Soares, L, Fecchio, A, Outlaw, D, Marra, P, Latta, SC, Valkiūnas, G, Hellgren, O and Bensch, S (2017) Avian migration and the distribution of malaria parasites in New World passerine. Journal of Biogeography 44, 11131123.CrossRefGoogle Scholar
Rojo, MA, Hernandez, MA, Campos, F, Santamaria, T, Dias, S and Casanueva, P (2015) The Iberian Peninsula is an area of infection by Haemoproteus Payevskyi and Haemoproteus Nucleocondensus for the white-throated dipper Cinclus Cinclus. Ardeola 62, 373382.10.13157/arla.62.2.2015.373CrossRefGoogle Scholar
Ronquist, F, Teslenko, M, Van Der Mark, P, Ayres, DL, Darling, A, Hohna, S and Huelsenbeck, JP (2012) Mrbayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.10.1093/sysbio/sys029CrossRefGoogle ScholarPubMed
Santiago-Alarcon, D, Palinauskas, V and Schaefer, HM (2012) Diptera vectors of avian haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biological Reviews of the Cambridge Philosophical Society 87, 928964.CrossRefGoogle ScholarPubMed
Tostes, R, Martinele, I, Vashist, U, Castañon, MC, Pinto Pde, F, Daemon, E and D'Agosto, M (2015) Molecular characterization and biochemical and histopathological aspects of the parasitism of Haemoproteus spp. in southern caracaras (Caracara Plancus). Journal of Parasitology 101, 687693.CrossRefGoogle Scholar
Valkiūnas, G (1993) The role of seasonal migrations in the distribution of Haemosporidia of birds in North Palearctic. Ekologija 2, 5767.Google Scholar
Valkiūnas, G (2005) Avian Malaria Parasites and Other Haemosporidia. Boca Raton, FL, USA: CRC Press.Google Scholar
Valkiūnas, G, Iezhova, TA, Križanauskienė, A, Palinauskas, V and Bensch, S (2008) A comparative analysis of microscopy and PCR-based detection methods for blood parasites. Journal of Parasitology 94, 13951401.CrossRefGoogle ScholarPubMed
Valkiūnas, G, Iezhova, TA, Loiseau, C and Sehgal, RNM (2009) Nested cytochrome b polymerase chain reaction diagnostics detect sporozoites of haemosporidian parasites in peripheral blood of naturally infected birds. Journal of Parasitology 95, 15121515.10.1645/GE-2105.1CrossRefGoogle Scholar
Valkiūnas, G, Žiegytė, R, Palinauskas, V, Bernotienė, R, Bukauskaitė, D, Ilgūnas, M, Dimitrov, D and Iezhova, TA (2015) Complete sporogony of Plasmodium relictum (lineage pGRW4) in mosquitoes Culex Pipiens Pipiens, with implications on avian malaria epidemiology. Parasitology Research 144, 30753085.CrossRefGoogle Scholar
Waldenström, J, Bensh, S, Kibol, S, Hasselquist, D and Ottosson, (2002) Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Molecular Ecology 11, 15451554.CrossRefGoogle ScholarPubMed
Walker, ED and Edman, JD (1985) The influence of host defensive behavior on mosquito (Diptera: Culicidae) biting persistence. Journal of Medical Entomology 22, 370372.CrossRefGoogle ScholarPubMed
Žiegytė, R, Palinauskas, V, Bernotienė, R, Iezhova, TA and Valkiūnas, G (2014) Haemoproteus minutus and Haemoproteus Belopolskyi (Haemoproteidae): complete sporogony in the biting midge Culicoides impunctatus (Ceratopogonidae), with implications on epidemiology of Haemoproteosis. Experimental Parasitology 145, 7479.10.1016/j.exppara.2014.07.014CrossRefGoogle Scholar
Žiegytė, R, Markovets, MY, Bernotienė, R, Mukhin, A, Iezhova, TA, Valkiūnas, G and Vaidas Palinauskas, V (2017) The widespread biting midge Culicoides impunctatus (Ceratopogonidae) is susceptible to infection with numerous Haemoproteus (Haemoproteidae) species. Parasites & Vectors 10, 397.CrossRefGoogle ScholarPubMed