Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T04:25:16.811Z Has data issue: false hasContentIssue false

Comparison of isolates and species of Toxocara and Toxascaris by biosynthetic labelling of somatic and ES proteins from infective larvae

Published online by Cambridge University Press:  06 April 2009

A. P. Page
Affiliation:
Wellcome Research Centre for Parasitic Infections, Department of Biology, Imperial College of Science Technology and Medicine, London
D. T. Richards
Affiliation:
Department of Biology, Royal Holloway and Bedford New College, Egham, Surrey
J. W. Lewis
Affiliation:
Department of Biology, Royal Holloway and Bedford New College, Egham, Surrey
H. M. Omar
Affiliation:
Department of Parasitology, College of Veterinary Medicine, Giza, Cairo, Egypt
R. M. Maizels
Affiliation:
Wellcome Research Centre for Parasitic Infections, Department of Biology, Imperial College of Science Technology and Medicine, London

Extract

Infective-stage larvae of three different isolates of Toxocara canis were intrinsically ([35S]methionine) labelled in culture, to determine the presence of similarities or differences in the somatic and ES antigens expressed between larvae derived from different hosts and different geographical regions. Two other closely related ascaridids, Toxascaris leonina which infects cats and dogs, and Toxocara vitulorum (Neoascaris vitulorum) which infects cattle, were also compared to T. canis larvae by this method. Overall comparisons were made by 1- and 2-dimensional electrophoresis, while immunological cross-reactivities between the different species were analysed by radio-immunoprecipitation. Our results show that extensive physicochemical characteristics are shared between T. canis isolates, both from different hosts and different geographical locations. A substantial overlap was revealed when T. canis and T. vitulorum antigens were compared, whereas Toxascaris was found to produce a distinct antigen profile: this result was independent of whether methionine- or Iodogen-labelled products were being considered. Antigen recognition by polyclonal antibodies raised to all three species and to the cat ascaridid Toxocara cati, revealed considerable cross-reactivities. The cross-reactions were especially prominent between the Toxocara species, a fact further substantiated when reactivity of T. canis ES-specific monoclonal antibodies were tested against T. leonina and T. vitulorum antigens. The ES antigens of T. leonina were not recognized by the T. canis monoclonals, whereas the majority of these antibodies precipitated antigens of T. vitulorum. One which did not react with T. vitulorum was monoclonal antibody Tcn 2, indicating its species-specific reactivity and therefore its potential for the specific diagnosis of human toxocariasis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bolas-Fernandez, F. & Wakelin, D. (1990). Infectivity, antigenicity and host responses to isolates of the genus Trichinella. Parasitology 100, 491–7.CrossRefGoogle ScholarPubMed
Boyce, W. M., Branstetter, B. A. & Kazacos, K. (1988). Comparative analysis of larval excretory-secretory antigens of Baylisascaris procyonis, Toxocara canis and Ascaris suum by western blotting and enzyme immunoassays. International Journal for Parasitology 18, 109–13.CrossRefGoogle Scholar
Boyce, W. M., Asai, D. J., Wilder, J. K. & Kazacos, K. R. (1989). Physicochemical characterization and monoclonal and polyclonal antibody recognition of Baylisascaris procyonis larval excretory-secretory antigens. Journal of Parasitology 74, 540–8.CrossRefGoogle Scholar
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 182–91.CrossRefGoogle ScholarPubMed
Bundy, D. A. P., Thompson, D. E., Robertson, B. D. & Cooper, E. S. (1987). Age-relationship of Toxocara canis seropositivity and geohelminth infection prevalence in two communities in St Lucia, West Indies. Tropical Medicine and Parasitology 38, 309–12.Google Scholar
Cypess, R. H., Karol, M. H., Zidian, J. L., Glickman, L. T. & Gitlin, D. (1977). Larva specific antibodies in patients with visceral larva migrans. Journal of Infectious Diseases 135, 633–40.CrossRefGoogle ScholarPubMed
De Savigny, D. H. (1975). In vitro maintenance of Toxocara canis larvae and a simple method for the production of Toxocara ES antigen for use in serodiagnostic tests for visceral larva migrans. Journal of Parasitology 61, 781–2.CrossRefGoogle Scholar
De Savigny, D. H., Voller, A. & Woodruff, A. W. (1979). Toxocariasis: serological diagnosis by enzyme immunoassay. Journal of Clinical Pathology 32, 284–8.CrossRefGoogle ScholarPubMed
Gillespie, S. H. (1988) The epidemiology of Toxocara canis. Parasitology Today 4, 180–2.CrossRefGoogle ScholarPubMed
Girdwood, R. W. A., Quinn, R., Smith, H. V. & Bruce, R. G. (1978). Assessment of some aspects of the potential human health hazard presented by canine toxocariasis in the Glasgow area. Communicable Diseases Scotland 12, 78.Google Scholar
Glickman, L. T. & Schantz, P. M. (1981). Epidemiology and pathogenesis of zoonotic toxocariasis. Epidemiological Reviews 3, 230–50.CrossRefGoogle ScholarPubMed
HOGARTH-Scott, R. S. (1966). Visceral larva migrans – an immunofluorescent examination of rabbit and human sera for antibodies to the ES antigens of the second stage larvae of Toxocara canis, Toxocara cati and Toxascaris leonina (Nematoda). Immunology 10, 217–23.Google Scholar
Kennedy, M. W., Qureshi, F., Fraser, E. M., Haswell-Elkins, M. R., Elkins, D. B. & Smith, H. V. (1989). Antigenic relationships between the surface-exposed, secreted and somatic materials of the nematode parasites Ascaris lumbricoides, Ascaris suum and Toxocara canis. Clinical and Experimental Immunology 75, 493500.Google ScholarPubMed
Kennedy, M. W., Qureshi, F., Haswell-Elkins, M. & Elkins, D. B. (1987 a). Homology and heterology between the secreted antigens of the parasitic larval stages of Ascaris lumbricoides and Ascaris suum. Clinical and Experimental Immunology 67, 2030.Google ScholarPubMed
Kennedy, M. W., Maizels, R. M., Meghji, M., Young, L., Qureshi, F. & Smith, H. V. (1987 b) Species-specific and common epitopes on the secreted and surface antigens of Toxocara canis infective larvae. Parasite Immunology 9, 407–20.CrossRefGoogle ScholarPubMed
Kennedy, M. W., Tierney, J., Ye, P., Mcmonagle, F. A., Mcintosh, A., Mclaughlin, D. & Smith, H. V. (1988). The secreted and somatic antigens of the third stage larvae of Anisakis simplex, and antigenic relationships with Ascaris suum, Ascaris lumbricoides and Toxocara canis. Molecular and Biochemical Parasitology 31, 3546.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head proteins of the bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Leslie, J. F., Cain, G. D., Meffe, G. K. & Vrijenhoek, R. C. (1982). Enzyme polymorphisms in Ascaris suum (Nematoda). Journal of Parasitology 68, 576–87.CrossRefGoogle ScholarPubMed
Maizels, R. M., De Savigny, D. & Ogilvie, B. M. (1984). Characterization of surface and excretory-secretory antigens of Toxocara canis infective larvae. Parasite Immunology 6, 2337.CrossRefGoogle ScholarPubMed
Maizels, R. M., Kennedy, M. W., Meghji, M., Robertson, B. D. & Smith, H. V. (1987). Shared carbohydrate epitopes on distinct surface and secreted epitopes of the parasitic nematode Toxocara canis. Journal of Immunology 139, 207–14.CrossRefGoogle ScholarPubMed
Markwell, M. A. K. & Fox, C. F. (1978). Surface specific iodination of membrane proteins of viruses and eucaryotic cells using 1,3,4,6-tetrachloro-3α, 6α-diphenylglycouril. Biochemistry 17, 4807–17.CrossRefGoogle Scholar
Meghji, M. & Maizels, R. M. (1986). Biochemical properties of larval excretory–secretory (ES) glycoproteins of the parasitic nematode Toxocara canis. Molecular and Biochemical Parasitology 18, 155–70.CrossRefGoogle Scholar
Nadler, S. A. (1986). Biochemical polymorphism in Parascaris equorum, Toxocara canis and Toxocara cati. Molecular and Biochemical Parasitology 18, 554.CrossRefGoogle ScholarPubMed
Nadler, S. A. (1987). Genetic variability in endoparasitic helminths. Parasitology Today 3, 154–5.CrossRefGoogle ScholarPubMed
Nicholas, W. L., Stewart, A. C. & Mitchell, G. F. (1984). Antibody responses to Toxocara canis using sera from parasite-infected mice, and protection from toxocariasis by immunization with ES antigens. Australian Journal of Experimental Biology and Medical Science 62, 619–26.CrossRefGoogle ScholarPubMed
Oaks, J. A. (1979). Artificial hatching and culture of Toxocara canis second stage larvae. Journal of Parasitology 65, 969–70.CrossRefGoogle ScholarPubMed
O'Farrell, P. Z., Goodman, H. M. & O'Farrell, P. H. (1977). High resolution two dimensional electrophoresis of basic as well as acidic proteins. Cell 12, 1133–42.CrossRefGoogle ScholarPubMed
Oshima, T. & Kliks, M. (1986). Effects of marine mammal parasites on human health. In Parasitology: Quo vadis? Proceedings of the Sixth International Congress of Parasitology, Brisbane, pp. 415421.Google Scholar
Price, P. W. (1977). General concepts on the evolutionary biology of parasites. Evolution 31, 405–20.CrossRefGoogle ScholarPubMed
Robertson, B. D., Bianco, A. E., Mckerrow, J. H. & Maizels, R. M. (1989). Proteolytic enzymes secreted by larvae of the nematode Toxocara canis. Experimental Parasitology 69, 30–6.CrossRefGoogle Scholar
Robertson, B. D., Burkot, T. R., Gillespie, S. H., Kennedy, M. W., Wambai, Z. & Maizels, R. M. (1988). Detection of circulating parasite antigen and specific antibody in Toxocara canis infections. Clinical and Experimental Immunology 74, 236–41.Google ScholarPubMed
Robertson, B. D., Rathaur, S. & Maizels, R. M. (1987). Antigenic and biochemical analyses of the excretory-secretory molecules of Toxocara canis infective larvae. In Current Topics in Veterinary Medicine and Animal Science ‘Helminth Zoonoses’ (ed. Geerts, S., Kumar, V. & Brandt, J.). The Netherlands: Martinus Nijhoff Publishers.Google Scholar
Schantz, P. M., Meyer, D. & Glickman, L. T. (1979). Clinical, serologic and epidemiologic characteristics of ocular toxocariasis. American Journal of Tropical Medicine and Hygiene 28, 24–8.CrossRefGoogle ScholarPubMed
Smith, H. V., Quinn, R., Bruce, R. G. & Girdwood, R. W. A. (1982). Development of the serological response in rabbits infected with Toxocara canis and Toxascaris leonina. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 8994.CrossRefGoogle ScholarPubMed
Smith, H. V., Maizels, R. M., Kennedy, M. W., Meghji, M. & Ingles, G. (1984). Monoclonal antibodies to Toxocara canis excretory/secretory antigens have human A blood group reactivity. Parasitology 89, xxxvii.Google Scholar
Smith, H. V. (1989). A rapid method for hatching infective eggs of Toxocara canis. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 215.CrossRefGoogle ScholarPubMed
Soulsby, E. J. I. (1983). Zoonoses in practice, Toxocariasis. British Veterinary Journal 139, 471–5.CrossRefGoogle Scholar
Sprent, J. F. A. (1956). The life history and development of Toxocara cati (Shrank, 1788) in the domestic cat. Parasitology 46, 5478.CrossRefGoogle Scholar
Sprent, J. F. A. (1958). Observations on the development of Toxocara canis (Werner, 1782) in the dog. Parasitology 48, 184209.CrossRefGoogle ScholarPubMed
Sprent, J. F. A. (1959). The life history and development of Toxascaris leonina (von Linstow, 1902) in the dog and cat. Parasitology 49, 330–71.CrossRefGoogle Scholar
Studier, F. W. (1973). Analysis of bacteriophage T7 early RNAs and proteins on slab gels. Journal of Molecular Biology 79, 237–48.CrossRefGoogle ScholarPubMed
Sugane, K., Howell, M. J. & Nicholas, W. L. (1985). Biosynthetic labelling of the excretory and secretory antigens of Toxocara canis larvae. Journal of Helminthology 59, 147–51.CrossRefGoogle ScholarPubMed
Sugimachi, K., Inokuchi, K., Ooiwa, T., Fujino, T. & Ishii, Y. (1985). Acute gastric anisakiasis; analysis of 178 cases. Journal of the American Medical Association 253, 1012–13.CrossRefGoogle ScholarPubMed
Thompson, D. E., Bundy, D. A. P., Cooper, E. S. & Schantz, P. M. (1986). Epidemiological characteristics of Toxocara canis zoonotic infection of children in a Caribbean community. Bulletin of the World Health Organization 64, 283–90.Google Scholar
Van Knapen, F., Leusden, J., Van & Polderman, A. M. (1983). Visceral larva migrans: examinations by means of ELISA of human sera for antibodies to excretory–secretory antigens of second stage larvae of Toxocara canis. Zentralblatt für Parasitenkunde 69, 113–18.CrossRefGoogle ScholarPubMed
Voller, A., Bartlett, A. & Bidwell, D. E. (1976). Enzyme immunoassay for parasitic diseases. Transactions of the Royal Society for Tropical Medicine and Hygiene 70, 98106.CrossRefGoogle Scholar
Wade, S. E. & Georgi, J. R. (1987). Radiolabelling and autoradiographic tracing of Toxocara canis larvae in male mice. Journal of Parasitology 73, 116–20.CrossRefGoogle ScholarPubMed
Warren, E. G. (1971). Observations on the migration and development of Toxocara vitulorum in natural and experimental hosts. International Journal for Parasitology 1, 8599.CrossRefGoogle ScholarPubMed
Woodruff, A. W. (1970). Toxocariasis. British Medical Journal 3, 663–9.CrossRefGoogle ScholarPubMed