Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T08:03:18.822Z Has data issue: false hasContentIssue false

Comparison of cysteine peptidase activities in Trichobilharzia regenti and Schistosoma mansoni cercariae

Published online by Cambridge University Press:  22 May 2007

M. KAŠNÝ*
Affiliation:
Charles University in Prague, Faculty of Science, Department of Parasitology, Viničná 7, 12844 Prague 2, Czech Republic
L. MIKEŠ
Affiliation:
Charles University in Prague, Faculty of Science, Department of Parasitology, Viničná 7, 12844 Prague 2, Czech Republic
J. P. DALTON
Affiliation:
Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, PO Box 123, Broadway, N.S.W. 2007 Sydney, Australia
A. P. MOUNTFORD
Affiliation:
Department of Biology (Area 5), University of York, P.O. Box 373, York YO10 5YW, UK
P. HORÁK
Affiliation:
Charles University in Prague, Faculty of Science, Department of Parasitology, Viničná 7, 12844 Prague 2, Czech Republic
*
*Corresponding author: Charles University in Prague, Faculty of Science, Department of Parasitology, Viničná 7, 12844 Prague 2, Czech Republic. Tel: +420 221 951 816. Fax: +420 224 919 704. E-mail: [email protected]

Summary

Cercariae of the bird schistosome Trichobilharzia regenti and of the human schistosome Schistosoma mansoni employ proteases to invade the skin of their definitive hosts. To investigate whether a similar proteolytic mechanism is used by both species, cercarial extracts of T. regenti and S. mansoni were biochemically characterized, with the primary focus on cysteine peptidases. A similar pattern of cysteine peptidase activities was detected by zymography of cercarial extracts and their chromatographic fractions from T. regenti and S. mansoni. The greatest peptidase activity was recorded in both species against the fluorogenic peptide substrate Z-Phe-Arg-AMC, commonly used to detect cathepsins B and L, and was markedly inhibited (>96%) by Z-Phe-Ala-CHN2 at pH 4·5. Cysteine peptidases of 33 kDa and 33–34 kDa were identified in extracts of T. regenti and S. mansoni cercariae employing a biotinylated Clan CA cysteine peptidase-specific inhibitor (DCG-04). Finally, cercarial extracts from both T. regenti and S. mansoni were able to degrade native substrates present in skin (collagen II and IV, keratin) at physiological pH suggesting that cysteine peptidases are important in the pentration of host skin.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bahgat, M., Doenhoff, M., Kirschfink, M. and Ruppel, A. (2002). Serine protease and phenoloxidase activities in hemocytes of Biomphalaria glabrata snails with varying susceptibility to infection with the parasite Schistosoma mansoni. Parasitology Research 88, 489–484. DOI: 10.1007/s00436-002-0595-6CrossRefGoogle ScholarPubMed
Bahgat, M. and Ruppel, A. (2002). Biochemical comparison of the serine protease (elastase) activities in cercarial secretions from Trichobilharzia ocellata and Schistosoma mansoni. Parasitology Research 88, 495500. DOI: 10.1007/s00436-002-0597-4CrossRefGoogle ScholarPubMed
Bayssade-Dufour, C., Vuong, P. N., Rene, M., Martin-Loehr, C. and Martins, C. (2002). Visceral lesions in mammals and birds exposed to agents of human cercarial dermatitis. Bulletin de la Société Pathologie Exotique 95, 229237.Google ScholarPubMed
Bieth, J. G. (2004). Pancreatic elastase. In Handbook of Proteolytic Enzymes, Vol. 2 (ed. Barrett, A. J., Rawlings, N. D. and Woessner, J. F.), pp. 15041508. Elsevier, Amsterdam.Google Scholar
Brady, C. P., Brindley, P. J., Dowd, A. J. and Dalton, J. P. (2000). Schistosoma mansoni: differential expression of cathepsins L1 and L2 suggests discrete biological functions for each enzyme. Experimental Parasitology 94, 7583. DOI: 10.1006/expr.1999.4478CrossRefGoogle ScholarPubMed
Caffrey, C. R. and McKerrow, J. H. (2004). Helminth cysteine proteases. In Handbook of Proteolytic Enzymes, Vol. 2 (ed. Barrett, A. J., Rawlings, N. D. and Woessner, J. F.), pp. 11831186. Elsevier, Amsterdam.Google Scholar
Caffrey, C. R., Rheinberg, C. E., Mone, H., Jourdane, J., Li, Y. L. and Ruppel, A. (1997). Schistosoma japonicum, S. mansoni, S. haematobium, S. intercalatum, and S. rodhaini: cysteine-class cathepsin activities in the vomitus of adult worms. Parasitology Research 83, 3741. DOI: 10.1007/s004360050310CrossRefGoogle ScholarPubMed
Caffrey, C. R., Salter, J. P., Lucas, K. D., Khiem, D., Hsieh, I., Lim, K. C., Ruppel, A., McKerrow, J. H. and Sajid, M. (2002). SmCB2, a novel tegumental cathepsin B from adult Schistosoma mansoni. Molecular and Biochemical Parasitology 121, 4961. DOI: 10.1016/S0166-6851(02)00022-1CrossRefGoogle ScholarPubMed
Curwen, R. S., Ashton, P. D., Sundaralingam, S. and Wilson, R. A. (2006). Identification of novel proteases and immunomodulators in the secretions of schistosome cercariae that facilitate host entry. Molecular and Cellular Proteomics 5, 835844. DOI: 10.1074/mcp.M500313-MCP200CrossRefGoogle ScholarPubMed
Chavez-Olortegui, C., Resende, M. and Tavares, C. A. P. (1992). Purification and characterization of a 47 kDa protease from Schistosoma mansoni cercarial secretion. Parasitology 105, 211218.CrossRefGoogle ScholarPubMed
Chlichlia, K., Schauwienold, B., Kirsten, C., Doenhoff, M. J., Fishelson, Z. and Ruppel, A. (2005). Schistosoma japonicum reveals distinct reactivity with antisera directed to proteases mediating host infection and invasion by cercariae of S. mansoni or S. haematobium. Parasite Immunology 27, 97102.CrossRefGoogle ScholarPubMed
Dalton, J. P. and Brindley, P. J. (1997). Proteases of trematodes. In Advances in Trematode Biology (ed. Fried, B. and Graczyk, T.), pp. 265307. CRC Press, New York.Google Scholar
Dalton, J. P., Clough, K. A., Jones, M. K. and Brindley, P. J. (1996). Characterization of the cathepsin-like cysteine proteinases of Schistosoma mansoni. Infection and Immunity 64, 13281334.CrossRefGoogle ScholarPubMed
Dalton, J. P., Clough, K. A., Jones, M. K. and Brindley, P. J. (1997). The cysteine proteinases of Schistosoma mansoni cercariae. Parasitology 114, 105112.CrossRefGoogle ScholarPubMed
Dalton, J. P., McKerrow, J. H. and Brindley, P. J. (2004). Trematode cysteine endopeptidases. In Handbook of Proteolytic Enzymes, Vol. 2 (ed. Barrett, A. J., Rawlings, N. D. and Woessner, J. F.), pp. 11761182. Elsevier, Amsterdam.Google Scholar
Dolečková, K., Kašný, M., Mikeš, L., Mutapi, F., Stack, C., Mountford, A. P. and Horák, P. (2007). Peptidases of Trichobilharzia regenti (Schistosomatidae) and its molluscan host Radix peregra s. lat. (Lymnaeidae) : construction and screening of cDNA library from intramolluscan stages of the parasite. Folia Parasitologica 54, (in the Press).CrossRefGoogle ScholarPubMed
Donkor, I. O. (2000). A survey of calpain inhibitors. Current Medicinal Chemistry 7, 11711188.CrossRefGoogle ScholarPubMed
Dvořák, J., Delcroix, M., Andrea Rossi, A., Vopálenský, V., Pospíšek, M., Šedinová, M., Mikeš, L., Sajid, M., Sali, A., McKerrow, J. H., Horák, P. and Caffrey, C. R. (2005). Multiple cathepsin B isoforms in schistosomula of Trichobilharzia regenti: identification, characterization and putative role in migration and nutrition. International Journal for Parasitology 35, 895910. DOI: 10.1016/j.ijpara.2005.02.018CrossRefGoogle ScholarPubMed
Fan, J., Minchella, D. J., Day, S. R., McManus, D. P., Tiu, W. U. and Brindley, P. J. (1998). Generation, identification, and evaluation of expressed sequence tags from different developmental stages of the Asian blood fluke Schistosoma japonicum. Biochemical and Biophysical Research Communications 252, 348356. DOI: 10.1006/bbrc.1998.9491CrossRefGoogle ScholarPubMed
Greenbaum, D., Medzihradszky, K. F., Burlingame, A. and Bogyo, M. (2000). Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chemistry and Biology 7, 569581. DOI: 10.1016/S1074-5521(00)00014-4CrossRefGoogle ScholarPubMed
He, Y. X., Salafsky, B. and Ramaswamy, K. (2005). Comparison of skin invasion among three major species of Schistosoma. Trends in Parasitology 21, 201203. DOI: 10.1016/j.pt.2005.03.003CrossRefGoogle ScholarPubMed
Horák, P., Dvořák, J., Kolářová, L. and Trefil, L. (1999). Trichobilharzia regenti, a pathogen of the avian and mammalian central nervous systems. Parasitology 119, 577581.CrossRefGoogle ScholarPubMed
Horák, P. and Kolářová, L. (2001). Bird schistosomes: do they die in mammalian skin? Trends in Parasitology 17, 6669. DOI: 10.1016/S1471-4922(00)01770-0CrossRefGoogle ScholarPubMed
Horák, P. and Kolářová, L. (2005). Molluscan and vertebrate immune responses to bird schistosomes. Parasite Immunology 27, 247255. DOI: 10.1111/j.1365-3024.2005.00776.xCrossRefGoogle ScholarPubMed
Horák, P., Kolářová, L. and Adema, C. M. (2002). Biology of the schistosome genus Trichobilharzia. Advances in Parasitology 52, 155233. DOI: 10.1016/S0065-308X(02)52012-1CrossRefGoogle ScholarPubMed
Hrádková, K. and Horák, P. (2002). Neurotropic behaviour of Trichobilharzia regenti in ducks and mice. Journal of Helminthology 76, 137141. DOI: 10.1079/JOH2002113CrossRefGoogle ScholarPubMed
Knudsen, G. M., Medzihradszky, K. F., Lim, K. C., Hansell, E. and McKerrow, J. H. (2005). Proteomic analysis of Schistosoma mansoni cercarial secretions. Molecular and Cellular Proteomics 4, 18621875. DOI: 10.1074/mcp.M500097-MCP200CrossRefGoogle ScholarPubMed
Kolářová, L., Horák, P. and Čada, F. (2001). Histopathology of CNS and nasal infections caused by Trichobilharzia regenti in vertebrates. Parasitology Research 87, 644650. DOI: 10.1007/s004360100431Google ScholarPubMed
Kouřilová, P., Hogg, K. G., Kolářová, L. and Mountford, A. P. (2004 a). Cercarial dermatitis caused by bird schistosomes comprises both immediate and late phase cutaneous hypersensitivity reactions. Journal of Immunology 172, 37663774.CrossRefGoogle ScholarPubMed
Kouřilová, P., Syrůček, M. and Kolářová, L. (2004 b). The severity of mouse pathologies caused by the bird schistosome Trichobilharzia regenti in relation to host immune status. Parasitology Research 93, 534542. DOI: 10.1007/s00436-004-1079-7CrossRefGoogle ScholarPubMed
Landsperger, W. J., Stirewalt, M. A. and Dresden, M. H. (1982). Purification and properties of a proteolytic enzyme from the cercariae of the human trematode parasite Schistosoma mansoni. The Biochemical Journal 201, 137144.CrossRefGoogle ScholarPubMed
Marikovsky, M., Arnon, R. and Fishelson, Z. (1988). Proteases secreted by transforming schistosomula of Schistosoma mansoni promote resistance to killing by complement. Journal of Immunology 141, 273278.CrossRefGoogle ScholarPubMed
Marikovsky, M., Arnon, R. and Fishelson, Z. (1990). Schistosoma mansoni: localization of the 28 kDa secreted protease in cercaria. Parasite Immunology 12, 389401.CrossRefGoogle ScholarPubMed
McKerrow, J. H., Caffrey, C., Kelly, B., Loke, P. and Sajid, M. (2006). Proteases in parasitic diseases. Annual Review of Pathology: Mechanisms of Disease 1, 497536. DOI: 10.1146/annurev.pathol.1.110304.100151CrossRefGoogle ScholarPubMed
McKerrow, J. H., Pino-Heiss, S., Linquist, R. and Werb, Z. (1985). Purification and characterization of an elastinolytic proteinase secreted by cercariae of Schistosoma mansoni. Journal of Biological Chemistry 260, 37033707.CrossRefGoogle ScholarPubMed
McKerrow, J. H. and Salter, J. (2002). Invasion of skin by Schistosoma cercariae. Trends in Parasitology 18, 193195. DOI: 10.1016/S1471-4922(02)02309-7CrossRefGoogle ScholarPubMed
Mikeš, L. and Man, P. (2003). Purification and characterization of a saccharide-binding protein from penetration glands of Diplostomum pseudospathaceum – a bifunctional molecule with cysteine protease activity. Parasitology 127, 6977. DOI: 10.1017/S0031182003003305CrossRefGoogle ScholarPubMed
Mikeš, L., Zídková, L., Kašný, M., Dvořák, J. and Horák, P. (2005). In vitro stimulation of penetration gland emptying by Trichobilharzia szidati and T. regenti (Schistosomatidae) cercariae. Quantitative collection and partial characterization of the products. Parasitology Research 96, 230241. DOI: 10.1007/s00436-005-347-1CrossRefGoogle Scholar
Ruppel, A., Chlichlia, K. and Bahgat, M. (2004). Invasion by schistosome cercariae: neglected aspects in Schistosoma japonicum. Trends in Parasitology 20, 397400. DOI: 10.1016/j.pt.2004.06.006CrossRefGoogle ScholarPubMed
Sajid, M. and McKerrow, J. H. (2002). Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology 120, 121. DOI: 10.1016/S0166-6851(01)00438-8CrossRefGoogle ScholarPubMed
Sajid, M., McKerrow, J. H., Hansell, E., Mathieu, M. A., Lucas, K. D., Hsieh, I., Greenbaum, D., Bogyo, M., Salter, J. P., Lim, K. C., Franklin, C., Kim, J. H. and Caffrey, C. R. (2003). Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Molecular and Biochemical Parasitology 131, 6575. DOI: 10.1016/S0166-6851(03)00194-4CrossRefGoogle ScholarPubMed
Salter, J. P., Choe, Y., Albrecht, H., Franklin, C., Lim, K. C., Craik, C. S. and McKerrow, J. H. (2002). Cercarial elastase is encoded by a functionally conserved gene family across multiple species of schistosomes. Journal of Biological Chemistry 277, 2461824624. DOI: 10.1074/jbc.M202364200CrossRefGoogle ScholarPubMed
Salter, J. P., Lim, K. C., Hansell, E., Hsieh, I. and McKerrow, J. H. (2000). Schistosome invasion of human skin and degradation of dermal elastin are mediated by a single serine protease. Journal of Biological Chemistry 275, 3866738673. DOI: 10.1074/jbc.M006997200CrossRefGoogle ScholarPubMed
Skelly, P. J. and Shoemaker, C. B. (2001). Schistosoma mansoni proteases Sm31 (cathepsin B) and Sm32 (legumain) are expressed in the cecum and protonephridia of cercariae. Journal of Parasitology 87, 12181221.CrossRefGoogle ScholarPubMed
Towatari, T., Nikawa, T., Murata, M., Yokoo, C., Tamai, M., Hanada, K. and Katunuma, N. (1991). Novel epoxysuccinyl peptides. A selective inhibitor of cathepsin B, in vivo. FEBS Letters 280, 311315. DOI: 10.1016/0014-5793(91)80319-XCrossRefGoogle ScholarPubMed
Whitfield, P. J., Bartlett, A., Marc, B., Brown, M. B. and Marriott, C. (2003). Invasion by schistosome cercariae: studies with human skin explants. Trends in Parasitology 19, 339340. DOI: 10.1016/S1471-4922(03)00143-0CrossRefGoogle ScholarPubMed
Zimmerman, M., Ashe, B., Yurewicz, E. C. and Patel, G. (1977). Sensitive assays for trypsin, elastase, and chymotrypsin using new fluorogenic substrates. Analytical Biochemistry 78, 4751. DOI: 10.1016/0003-2697(77)90006-9CrossRefGoogle ScholarPubMed