Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T15:51:22.656Z Has data issue: false hasContentIssue false

Comparative development of Echinococcus multilocularis in its definitive hosts

Published online by Cambridge University Press:  19 January 2006

R. C. A. THOMPSON
Affiliation:
World Health Organisation Collaborating Centre for the Molecular Epidemiology of Parasitic Infections, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150
C. M. O. KAPEL
Affiliation:
WHO/FAO Collaborating Center for Parasitic Zoonoses, Danish Centre for Experimental Parasitology, Royal Veterinary and Agricultural University, Dyrlaegevej 100, DK 1870 Frederiksberg C, Denmark
R. P. HOBBS
Affiliation:
World Health Organisation Collaborating Centre for the Molecular Epidemiology of Parasitic Infections, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150
P. DEPLAZES
Affiliation:
WHO/FAO Collaborating Center for Parasitic Zoonoses, Danish Centre for Experimental Parasitology, Royal Veterinary and Agricultural University, Dyrlaegevej 100, DK 1870 Frederiksberg C, Denmark WHO Collaborating Center for Parasitic Zoonoses, Institute of Parasitology, University of Zurich, Winterthurerstrasse 266A, 8057 Zurich, Switzerland

Abstract

The comparative development of Echinococcus multilocularis was studied in its definitive hosts, the fox, dog, cat and raccoon dog, beyond the pre-patent period to 90 days post-infection. All host species, apart from cats were susceptible to infection and capable of supporting substantial worm burdens. Although worms in cats matured and produced thick-shelled eggs, their overall development was retarded compared to that in other species in which the parasite matured rapidly producing large populations of gravid worms. E. multilocularis matured rapidly in foxes and raccoon dogs and this was sustained in raccoon dogs but not in foxes in which maturation of worms declined during the later stages of infection, in contrast to that in both raccoon dogs and dogs. These populations were sustained for longer in raccoon dogs and dogs compared to foxes. Cats would appear to have only a minor role in the maintenance of E. multilocularis in endemic areas, and infections in cats may be of minimal public health significance. In contrast, foxes, dogs and the recently recognized definitive host the raccoon dog, are all capable of playing significant roles in the epidemiology of alveolar echinococcosis. This study also demonstrated that the developmental processes of growth, segmentation, proglottization and maturation in adult Echinococcus are independent and can be influenced by environmental factors thus confirming earlier in vitro observations.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brehm, K., Wolf, M., Beland, H., Kroner, A. and Frosch, M. ( 2003). Analysis of differential gene expression in Echinococcus multilocularis larval stages by means of spliced leader differential display. International Journal for Parasitology 33, 11451159.CrossRefGoogle Scholar
Constantine, C. C., Lymbery, A. J., Jenkins, D. J., Bennet-Jenkins, E. M., Behm, C. A. and Thompson, R. C. A. ( 1998). Factors influencing the development and carbohydrate metabolism of Echinococcus granulosis in dogs. Journal of Parasitology 84, 873881.CrossRefGoogle Scholar
Crellin, J. R., Marchiondo, A. A. and Andersen, F. L. ( 1981). Comparison of suitability of dogs and cats as hosts of Echinococcus multilocularis. American Journal of Veterinary Research 42, 19801981.Google Scholar
Da Silva, C. M., Henrique, Ferreira, B., Picon, M., Gorfinkiel, N., Ehrlich, R. and Zaha, A. ( 1993). Molecular cloning and characterization of actin genes from Echinococcus granulosus. Molecular and Biochemical Parasitology 60, 209219.CrossRefGoogle Scholar
Deplazes, P., Hegglin, D., Gloor, S. and Romig, T. ( 2004). Wilderness in the city: the urbanization of Echinococcus multilocularis. Trends in Parasitology 20, 7784.CrossRefGoogle Scholar
Eckert, J. and Deplazes, P. ( 2004). Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clinical Microbiology Review 17, 107135.CrossRefGoogle Scholar
Eckert, J., Conraths, F. J. and Tackmann, K. ( 2000). Echinococcosis: an emerging or re-emerging zoonosis? International Journal for Parasitology 30, 12831294.Google Scholar
Eckert, J., Thompson, R. C. A., Michael, S. A., Kumaratilake, L. M. and El-Sawah, H. M. ( 1989). Echinococcus granulosus of camel origin: development in dogs and parasite morphology. Parasitology Research 75, 536544.CrossRefGoogle Scholar
Eckert, J., Thompson, R. C. A., Bucklar, H., Bilger, B. and Deplazes, P. ( 2001). Efficacy evaluation of epsiprantel (Cestex®) against Echinococcus multilocularis in dogs and cats. Berliner und Münchener Tierärztliche Wochenschrift 114, 121126.Google Scholar
Esperon, P., Gorfinkiel, N., Garat, B. and Ehrlich, R. ( 2000). Characterisation of the proximal regulatory domain of the Echinococcus granulosus homeodomain-containing gene EgHbx1 (2000). International Journal for Parasitology 30, 4549.CrossRefGoogle Scholar
Ferreira, H. B. and Zaha, A. ( 1990). Molecular cloning and characterisation of actin genes from Echinococcus granulosus. In Basic Research in Helminthiases ( ed. Ehrlich, R., Nieto, A. and Yarzabal, L.), pp. 87104. LOGOS, Montevideo, Uruguay.
Hofer, S., Gloor, S., Muller, U., Mathis, A., Hegglin, D. and Deplazes, P. ( 2000). High prevalence of Echinococcus multilocularis in urban red foxes (Vulpes vulpes) and voles (Arvicola terrestris) in the city of Zurich, Switzerland. Parasitology 120, 135142.CrossRefGoogle Scholar
Howell, M. J. ( 1995). Maintenance and cultivation of Echinococcus species in vivo and in vitro. In Echinococcus and Hydatid Disease ( ed. Thompson, R. C. A. and Lymbery, A. J.), pp. 201232. CAB International, Wallingford.
Jenkins, D. J. and Romig, T. ( 2000). Efficacy of Droncit® Spot-on (praziquantel) 4% w/v against immature and mature Echinococcus multilocularis in cats. International Journal for Parasitology 30, 959962.CrossRefGoogle Scholar
Kamiya, M., Ooi, H. K., Oku, Y., Yagi, K. and Ohbayashi, M. ( 1985). Growth and development of Echinococcus multilocularis in experimentally infected cats. Japanese Journal of Veterinary Research 33, 135140.Google Scholar
Kamiya, M., Ooi, H. K. and Ohbayashi, M. ( 1986). Susceptibility of cats to the Hokkaido isolate of Echinococcus multilocularis. Nippon Juigaku Zasshi 48, 763767.CrossRefGoogle Scholar
Kapel, C. M. O., Torgerson P. R., Thompson R. C. A. and Deplazes P. ( 2006). Reproductive potential of Echinococcus multilocularis in experimentally infected foxes, dogs, raccoon dogs and cats. International Journal for Parasitology (in the Press).CrossRefGoogle Scholar
Kauhala, K. ( 1994). The raccoon dog: a successful canid. Canid News 2, 15.Google Scholar
Martinez, C., Chalar, C., Gonzalez, J. and Ehrlich, R. ( 1997). The homeobox-containing gene EgHbx3 from Echinococcus granulosus is expressed in the stalk of protoscoleces. International Journal for Parasitology 27, 13791381.CrossRefGoogle Scholar
Mustonen, A. M., Nieminen, P., Puukka, M., Asikainen, J., Saarela, S., Karonen, S. L., Kukkonen, J. V. and Hyvarinen, H. ( 2004). Physiological adaptations of the raccoon dog (Nyctereutes procyonoides) to seasonal fasting-fat and nitrogen metabolism and influence of continuous melatonin treatment. Journal of Comparative Physiology – B, Biochemical, Systemic, and Environmental Physiology 174, 112.Google Scholar
Nonaka, N., Iida, M., Yagi, K., Ito, T., Ooi, H.-K., Oku, Y. and Kamiya, M. ( 1996). Time course of coproantigen excretion in Echinococcus multilocularis infections in foxes and an alternative definitive host, golden hamsters. International Journal for Parasitology 26, 12711278.CrossRefGoogle Scholar
Oliver, G., Vispo, M., Mailhos, A., Martinez, C., Sosa-Pineda, B., Fielitz, W. and Ehrlich, R. ( 1992). Homeoboxes in flatworms. Genetics 121, 337342.CrossRefGoogle Scholar
Smyth, J. D. ( 1969). Parasites as biological models. Parasitology 59, 7391.CrossRefGoogle Scholar
Smyth, J. D. ( 1971). Development of monozoic forms of Echinococcus granulosus during in vitro culture. International Journal for Parasitology 1, 121124.CrossRefGoogle Scholar
Smyth, J. D. and Barrett, N. J. ( 1979). Echinococcus multilocularis: further observations on strobilar differentiation in vitro. Revista Iberica Parasitologia 39, 3953.Google Scholar
Smyth, J. D. and Davies, Z. ( 1975). In vitro suppression of segmentation in Echinococcus multilocularis with morphological transformation of protoscoleces into monozoic adults. Parasitology 71, 125135.CrossRefGoogle Scholar
Sreter, T., Szell, Z., Egyed, Z. and Varga, I. ( 2003). Echinococcus multilocularis: an emerging pathogen in Hungary and Central Eastern Europe? Emerging Infectious Diseases 9, 384386.Google Scholar
Stieger, C., Hegglin, D., Schwarzenbach, G., Mathis, A. and Deplazes, P. ( 2002). Spatial and temporal aspects of urban transmission of Echinococcus multilocularis. Parasitology 124, 631640.CrossRefGoogle Scholar
Thiess, A., Schuster, R., Nöckler, K. and Mix, H. ( 2001). Helminthenfunde beim einheimischen Marderhund Nyctereutes procyonoides (Gray, 1834). Berliner und Münchener Tierärztliche Wochenschrift 114, 273276.Google Scholar
Thompson, R. C. A. ( 1995). Biology and systematics of Echinococcus. In Echinococcus and Hydatid Disease ( ed. Thompson, R. C. A. and Lymbery, A. J.), pp. 150. CAB International, Wallingford.
Thompson, R. C. A. and Eckert, J. ( 1983). Observations on Echinococcus multilocularis in the definitive host. Zeitschrift für Parasitenkunde 69, 335345.CrossRefGoogle Scholar
Thompson, R. C. A., Deplazes, P. and Eckert, J. ( 1990). Uniform strobilar development of Echinococcus multilocularis in vitro from protoscolex to immature stages. Journal of Parasitology 76, 240247.CrossRefGoogle Scholar
Thompson, R. C. A., Deplazes, P. and Eckert, J. ( 2003). Observations on the development of Echinococcus multilocularis in cats. Journal of Parasitology 89, 399402.CrossRefGoogle Scholar
Vogel, H. ( 1957). Ueber den Echinococcus multilocularis Sueddeutschlands. I. Das Bandwurm-Stadium von Staemmen menschlicher und tierischer Herkunft. Zeitschrift fuer Tropenmedizine und Parasitologie 8, 404454.Google Scholar
Yagi, K., Ito, T. and Ishige, M. ( 1996). A survival strategy of Echinococcus multilocularis presumed by experimental studies. In Alveolar Echinococcosis. Strategy for Eradication of Alveolar Echinococcosis of the Liver ( ed. Uchino, J. and Sato, N.), pp. 9799. Fuji Shoin, Sapporo.
Yamashita, J., Ohbayashi, M. and Kitamura, Y. ( 1958). Studies on Echinococcosis VII. On the development of Echinococcus multilocularis in the tapeworm stage. Japanese Journal of Veterinary Research 6, 8991.Google Scholar
Yimam, A. E., Nonaka, N., Oku, Y. and Kamiya, M. ( 2002). Prevalence and intensity of Echinococcus multilocularis in red foxes (Vulpes vulpes schrencki) and raccoon dogs (Nyctereutes procyonoides albus) in Otaru City, Hokkaido, Japan. Japanese Journal of Veterinary Research 49, 287296.Google Scholar
Zar, J. H. ( 1984). Biostatistical Analysis, 2nd Edn. Prentice-Hall Inc., Englewood Cliffs. New Jersey.
Zavala-Góngora, R., Kroner, A., Wittek, B., Knaus, P. and Brehm, K. ( 2003). Identification and characterisation of two distinct SMAD proteins from the fox-tapeworm Echinococcus multilocularis. International Journal for Parasitology 33, 16651677.CrossRefGoogle Scholar
Zhang, W., Li, J., You, H., Zhang, Z., Turson, G., Loukas, A. and McManus, D. P. ( 2003). A gene family from Echinococcus granulosus differentially expressed in mature adult worms. Molecular and Biochemical Parasitology 126, 2533.CrossRefGoogle Scholar