Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T16:55:53.931Z Has data issue: false hasContentIssue false

Coevolutionary interactions between host life histories and parasite life cycles

Published online by Cambridge University Press:  16 March 2011

J. C. Koella*
Affiliation:
Department of Zoology, University of Aarhus, Universitetsparken B135, DK-8000 Århus C, Denmark
P. Agnew
Affiliation:
Laboratoire d'Ecologie, Universite Pierre et Marie Curie (CNRS URA 258), 7 quai St. Bernard, 75252 Paris, France
Y. Michalakis
Affiliation:
Laboratoire d'Ecologie, Universite Pierre et Marie Curie (CNRS URA 258), 7 quai St. Bernard, 75252 Paris, France
*
*Corresponding author: Tel:+44 89 42 27 21. Fax: +45 86 12 51 75. email: [email protected].

Summary

Several recent studies have discussed the interaction of host life-history traits and parasite life cycles. It has been observed that the life-history of a host often changes after infection by a parasite. In some cases, changes of host life-history traits reduce the costs of parasitism and can be interpreted as a form of resistance against the parasite. In other cases, changes of host life-history traits increase the parasite's transmission and can be interpreted as manipulation by the parasite. Alternatively, changes of host's life-history traits can also induce responses in the parasite's life cycle traits. After a brief review of recent studies, we treat in more detail the interaction between the microsporidian parasite Edhazardia aedis and its host, the mosquito Aedes aegypti. We consider the interactions between the host's life-history and parasite's life cycle that help shape the evolutionary ecology of their relationship. In particular, these interactions determine whether the parasite is benign and transmits vertically or is virulent and transmits horizontally.

Key words: host-parasite interaction, life-history, life cycle, coevolution.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnew, P. & Koella, J. C. (1997). Virulence, parasite mode of transmission and host fluctuating asymmetry. Proceedings of the Royal Society of London B 264, 915.CrossRefGoogle ScholarPubMed
Agnew, P. & Koella, J. C. (1998). Life history interactions with environmental conditions in a host-parasite relationship and the parasite's mode of transmission. Evolutionary Ecology, in press.Google Scholar
Alexander, H. M. (1989). An experimental field study of anther-smut disease of Silene alba caused by Ustilago violacea: genotypic variation and disease incidence. Evolution 43, 835847.Google ScholarPubMed
Apostol, B. L., Black, W. C. I., Reiter, P. & Miller, B. R. (1994). Use of randomly amplified polymorphic DNA amplified by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan, Puerto Rico. American Journal of Tropical Medicine and Hygiene 51, 8997.CrossRefGoogle ScholarPubMed
Ballabeni, P. (1995). Parasite-induced gigantism in a snail – a host adaptation. Functional Ecology 9, 887893.CrossRefGoogle Scholar
Baudoin, M. (1975). Host castration as a parasitic strategy. Evolution 29, 335352.CrossRefGoogle ScholarPubMed
Becnel, J. J., Garcia, J. J. & Johnson, M. A. (1995). Edhazardia aedis (Microspora: Culicosporidae) effects on the reproductive capacity of Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology 32, 549553.CrossRefGoogle ScholarPubMed
Becnel, J. J., Sprague, V., Fukuda, T. & Hazard, E. I. (1989). Development of Edhazardia aedis (Kudo, 1930) N. G., N. Comb. (Microsporida: Amblyosporidae) in the mosquito Aedes aegypti (L.) (Diptera: Culicidae). Journal of Protozoology 36, 119130.CrossRefGoogle Scholar
Blackmore, M. S. (1994). Mermithid parasitism of adult mosquitoes in Sweden. The American Midland Naturalist 132, 192198.CrossRefGoogle Scholar
Briegel, H. (1990). Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. Journal of Insect Physiology 36, 165172.CrossRefGoogle Scholar
Christe, P., Richner, H. & Oppliger, A. (1996). Begging, food provisioning, and nestling competition in great tit broods infected with ectoparasites. Behavioral Ecology 7, 127131.CrossRefGoogle Scholar
Clay, K. (1991). Parasitic castration of plants by fungi. Trends in Ecology and Evolution 6, 162166.CrossRefGoogle ScholarPubMed
Clay, K. & Kover, P. (1996). Evolution and stasis in plant-pathogen associations. Ecology 77, 9971003.CrossRefGoogle Scholar
Frank, S. A. (1992). A kin selection model for the evolution of virulence. Proceedings of the Royal Society of London B 250, 195197.Google ScholarPubMed
Frank, S. A. (1996). Models of parasite virulence. Quarterly Review of Biology 71, 3778.CrossRefGoogle ScholarPubMed
Hafner, M. S., Sudman, P. D., Villablanca, F. X., Spradling, T. A., Demastes, J. W. & Nadler, S. A. (1994). Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265, 10871089.CrossRefGoogle ScholarPubMed
Hamilton, W. D., Axelrod, R. & Tanese, R. (1990). Sexual reproduction as an adaptation to resist parasites (a review). Proceedings of the National Academy of Sciences, USA 87, 35663573.CrossRefGoogle ScholarPubMed
Hamilton, W. D. & Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites? Science 218, 384387.CrossRefGoogle Scholar
Herre, E. A. (1993). Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259, 14421445.CrossRefGoogle ScholarPubMed
Hochberg, M. E., Michalakis, Y. & De Meeus, T. (1992). Parasitism as a constraint on the rate of life-history evolution. Journal of Evolutionary Biology 5, 491504.CrossRefGoogle Scholar
Johnson, M. A., Becnel, J. J. & Undeen, A. H. (1997). A new sporulation sequence in Edhazardia aedis (Microsporidia: Culicosporidiae), a parasite of the mosquito Aedes aegypti (Diptera: Culicidae). Journal of Invertebrate Pathology 70, 6975.CrossRefGoogle Scholar
Koella, J. C. & Agnew, P. (1997). Blood-feeding success of the mosquito Aedes aegypti depends on the transmission route of its parasite Edhazardia aedis. Oikos 78, 311316.CrossRefGoogle Scholar
Koella, J. C. & Agnew, P. (1998). A correlated response of a parasite's virulence and life cycle to selection on its host's life-history. Journal of Evolutionary Biology, in press.Google Scholar
Kuris, A. M. (1974). Trophic interactions: similarity of parasitic castrations to parasitoids. Quarterly Review of Biology 49, 129148.CrossRefGoogle Scholar
Ladle, R. J. (1992). Parasites and sex: catching the Red Queen. Trends in Ecology and Evolution 7, 405408.CrossRefGoogle ScholarPubMed
Lafferty, K. D. (1997). If the shoe fits, wear it: the influence of host life-history on parasite life-history, Sixth Congress of the European Society for Evolutionary Biology, Arnhem.Google Scholar
Landry, S. V., De Foliart, G. R. & Hogg, D. B. (1988). Adult body size and survivorship in a field population of Aedes triseriatus. Journal of the American Mosquito Control Association 4, 121128.Google Scholar
Lipsitch, M., Herre, E. A. & Nowak, M. A. (1995). Host population structure and the evolution of virulence: a ‘law of diminishing returns’. Evolution 49, 743748.Google ScholarPubMed
Lyimo, E. O. (1993). The bionomics of the malaria mosquito Anopheles gambiae sensu lato in southeast Tanzania: adult size variation and its effect on female fecundity, survival and malaria transmission. PhD thesis, Wageningen Agricultural University.Google Scholar
MacDonald, G. (1957). The Epidemiology and Control of Malaria. London: Oxford University Press.Google Scholar
Michalakis, Y. & Hochberg, M. E. (1994). Parasitic effects on host life-history traits: a review of recent studies. Parasite 1, 291294.CrossRefGoogle ScholarPubMed
Minchella, D. J. (1985). Host life-history variation in response to parasitism. Parasitology 90, 205216.CrossRefGoogle Scholar
Minchella, D. J. & Loverde, P. T. (1981). A cost of increased early reproductive effort in the snail Biomphalaria glabrata. The American Naturalist 118, 876881.CrossRefGoogle Scholar
Minchella, D. J. & Loverde, P. T. (1983). Laboratory comparison of the relative success of Biomphalaria glabrata stocks which are susceptible and insusceptible to infection with Schistosoma mansoni. Parasitology 86, 335344.CrossRefGoogle ScholarPubMed
Morand, S. & Sorci, G. (1997). Determinants of life-history evolution in nematodes. Parasitology Today, in press.Google Scholar
Nasci, R. S. (1986). The size of emerging and hostseeking Aedes aegypti and the relation of size to blood-feeding success in the field. Journal of the American Mosquito Control Association 2, 6162.Google ScholarPubMed
Norris, K., Anwar, M. & Read, A. F. (1994). Reproductive effort influences the prevalence of haematozoan parasites in great tits. Journal of Animal Ecology 63, 601610.CrossRefGoogle Scholar
Oppliger, A., Christe, P. & Richner, H. (1996). Clutch size and malaria resistance. Nature 381, 565.CrossRefGoogle ScholarPubMed
Poulin, R. (1996). The evolution of life-history strategies in parasitic animals. Advances in Parasitology 37, 107134.CrossRefGoogle ScholarPubMed
Richner, H., Christe, P. & Oppliger, A. (1995). Paternal investment affects prevalence of malaria. Proceedings of the National Academy of Sciences, USA 92, 11921194.CrossRefGoogle ScholarPubMed
Shykoff, J. A., Bucheli, E. & Kaltz, O. (1996). Flower lifespan and disease risk. Nature 379, 779.CrossRefGoogle Scholar
Shykoff, J. A. & Kaltz, O. (1997). Effects of the anther smut fungus Microbotryum violaceum on host lifehistory patterns in Silene latifolia (Caryophyllaceae). International Journal of Plant Sciences 158, 164171.CrossRefGoogle Scholar
Siegel, J. P., Novak, R. J., Lampman, R. L. & Steinly, B. A. (1992). Statistical appraisal of the weight-wing length relationship of mosquitoes. Journal of Medical Entomology 29, 711714.CrossRefGoogle ScholarPubMed
Skrjabin, K. I. (1949). A Key to Parasitic Nematodes. Moscow: Akademiya Nauk SSSR Publishers (Israel Program for Scientific Translations 1969 & Amerind Publishing New Delhi 1991).Google Scholar
Sorci, G., Clobert, J. & Michalakis, Y. (1996). Cost of reproduction and cost of parasitism in the common lizard, Lacerta vivipara. Oikos 76, 121130.CrossRefGoogle Scholar
Sorci, G., Morand, S. & Hugot, J.-P. (1997). Host—parasite coevolution: comparative evidence for covariation of life-history traits in primates and oxyurid parasites. Proceedings of the Royal Society of London B 264, 285289.CrossRefGoogle ScholarPubMed
Tripet, F. & Richner, H. (1997). Host responses to ectoparasites: food compensation by parent blue tits. Oikos 78, 557561.CrossRefGoogle Scholar
Yan, G., Severson, D. W. & Christensen, B. M. (1997). Costs and benefits of mosquito refractoriness to malaria parasites: implications for genetic variability of mosquitoes and genetic control of malaria. Evolution 51, 441450.CrossRefGoogle ScholarPubMed