Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T05:18:45.606Z Has data issue: false hasContentIssue false

Chemotropic studies on the blow-flies Lucilia sericata (Mg.) and Lucilia caesar (L.)

Published online by Cambridge University Press:  06 April 2009

J. B. Cragg
Affiliation:
University College of North Wales, Bangor
G. R. Ramage
Affiliation:
University College of North Wales, Bangor

Extract

1. Oviposition by L. sericata has been induced on a moist clipped fleece by incorporating ammonium carbonate and indole, hence attraction is not completely dependent on some factor produced by the living animal.

2. Chemistry of attractants. A new method for determining small amounts of hydrogen sulphide is described. Larval excreta contains hydrogen sulphide but no indole or skatole. Following incubation the ammonia and sulphydryl contents of various natural attractants are markedly increased.

3. Field trials on sheep. 0·002% ethyl mercaptan in conjunction with 0·1% ammonium carbonate was able to induce oviposition by L. sericata. The mercaptan concentration could be reduced to 0·001%, providing 0·0001% hydrogen sulphide was present. 0·01% mercaptan and aqueous solutions of hydrogen sulphide alone are not attractive.

4. The results obtained support the hypothesis that attraction is the result of the breakdown of cystine, with the production of sulphur compounds, coupled with the presence of ammonium carbonate (or of some putrefactive material).

5. Chemical baits. During the period 17 August–21 September 1943, various combinations of ammonium carbonate, hydrogen sulphide and indole in conjunction with sheep wool proved to be attractants for females of L. caesar.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1945

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brown, A. W. A. (1938 a). Biochem. J. 32, 895902.CrossRefGoogle Scholar
Brown, A. W. A. (1938 b). Biochem. J. 32, 903–12.CrossRefGoogle Scholar
Davies, W. M. & Hobson, R. P. (1935). Ann. Appl. Biol. 22, 279–93.CrossRefGoogle Scholar
Desnuelle, P. & Fromageot, C. (1939). Enzymologia, 6, 80–7.Google Scholar
Feigl, F. (1937). Qualitative Analysis by Spot Tests (English translation). Amsterdam.Google Scholar
Freney, M. R. (1937). Pamph., Coun. Sci. Industr. Res. Aust. 74, 124.Google Scholar
Freney, M. R. (1940). Bull., Coun. Sci. Industr. Res. Aust. 130, 152.Google Scholar
Freudenberg, K. & Münch, A. (1940). Hoppe-Seyl. Z. 263, 13.CrossRefGoogle Scholar
Harris, M. & Smith, A. L. (1938). Amer. Dyestuff Rep. 27, 175–8PGoogle Scholar
Harris, M. & Smith, A. L. (1938). J. Bur. Stand. 20, 563–9.CrossRefGoogle Scholar
Harris, M. & Smith, A. L. (1938).Cited in Brit. Chem. & Physiol. Absts. B, 1938, p. 766.Google Scholar
Hepburn, G. A. & Nolte, M. C. A. (1943). Onderstepoort J. Vet. Sci. Anim. Indust. 18, 2748.Google Scholar
Hobson, R. P. (1935). Ann. Appl. Biol. 22, 294300.CrossRefGoogle Scholar
Hobson, R. P. (1936). Ann. Appl. Biol. 23, 845–51.CrossRefGoogle Scholar
Hobson, R. P. (1937). Ann. Appl. Biol. 24, 627–31.CrossRefGoogle Scholar
Mark, H. (1925). Beiträye zur Kenntnis der Wolle und ihrer Bearbeitung. Berlin. Cited by BurgessGoogle Scholar
Mark, H. (1925). J. Text. Inst. 1928, 19, 315–22T.Google Scholar
Routh, J. I. (1940). J. Biol. Chem. 135, 175–81.CrossRefGoogle Scholar
Rudolfs, W. & Chamberlain, N. S. (1932). Industr. Engng Chem. 24, 111.CrossRefGoogle Scholar
Seddon, H. B. (1931). Agri. Gaz. N.S.W. 42, 581–94.Google Scholar