Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T20:04:28.290Z Has data issue: false hasContentIssue false

Characterization of two classes of benzodiazepine binding sites in Schistosoma mansoni

Published online by Cambridge University Press:  22 February 2007

F. NOËL*
Affiliation:
Departamento de Farmacologia Básica e Clínica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-590, Rio de Janeiro, Brasil
D. L. MENDONÇA-SILVA
Affiliation:
Departamento de Farmacologia Básica e Clínica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-590, Rio de Janeiro, Brasil
J-P. B. THIBAUT
Affiliation:
Departamento de Farmacologia Básica e Clínica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-590, Rio de Janeiro, Brasil
D. V. S. LOPES
Affiliation:
Departamento de Farmacologia Básica e Clínica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-590, Rio de Janeiro, Brasil
*
*Corresponding author. Tel: +55 (21) 2562 6732. E-mail: [email protected]

Summary

As we have recently shown that GABA should be considered a putative neurotransmitter in Schistosoma mansoni, the present work aimed to search for GABAA receptors in adult worms using [3H]-flunitrazepam to label the allosteric benzodiazepine binding site which is classically present on GABAA receptor complexes. We detected a large population (Bmax=8·25±1·1 pmol . mg protein−1) of high affinity (Kd=33·6±1·5 nm) binding sites for flunitrazepam. These sites harboured a singular pharmacological modulation that does not fit well with a mammalian central benzodiazepine receptor, mainly due to a very high affinity for Ro5-4864 and a very low affinity for clonazepam. We also detected a second population of benzodiazepine binding sites labelled with high affinity (IC50=85 nm) by [3H]-PK11195, a selective ligand of the mammalian peripheral benzodiazepine receptor. In conclusion, this work describes the pharmacological properties of a large population of central-like benzodiazepine receptors supporting their study as putative new targets for the development of anti-parasitic agents. We also describe, for the first time, the presence of peripheral benzodiazepine receptors in this parasite.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnard, E. A., Skolnick, P., Olsen, R. W., Mohler, H., Sieghart, W., Biggio, G., Braestrup, C., Bateson, A. N. and Langer, S. Z. (1998). International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acid A receptors: classification on the basis of subunit structure and receptor function. Pharmacological Reviews 50, 291313.Google Scholar
Bennett, J. L. (1980). Characteristics of antischistosomal benzodiazepine binding sites in Schistosoma mansoni. Journal of Parasitology 66, 742747.CrossRefGoogle ScholarPubMed
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Cunha, V. M. N., De Souza, W. and Noël, F. (1988). A Ca2+ stimulated, Mg2+-dependent ATPase activity in subcellular fractions from Schistosoma mansoni. FEBS Letters 241, 6568.CrossRefGoogle ScholarPubMed
Cunha, V. M. N., Mever-Fernandes, J. R. and Noël, F. (1992). A (Ca2+–Mg2+) ATPase from Schistosoma mansoni is coupled to an active transport of calcium. Molecular and Biochemical Parasitology 52, 167174.CrossRefGoogle Scholar
Day, T. A. and Maule, A. G. (1999). Parasitic peptides! The structure and function of neuropeptides in parasitic worms. Peptides 20, 9991019.CrossRefGoogle ScholarPubMed
Eriksson, K. S., Maule, A. G., Halton, D. W., Panula, P. A. J. and Shaw, C. (1995). GABA in the nervous system of parasitic flatworms. Parasitology 110, 339346.CrossRefGoogle ScholarPubMed
Eriksson, K. S. and Panula, P. (1994). Gamma-aminobutyric acid in the nervous system of a planarian. Journal of Comparative Neurology 345, 528536.CrossRefGoogle ScholarPubMed
Gavish, M., Bachman, I., Shoukrun, R., Katz, Y., Veenman, L., Weisinger, G. and Weizman, A. (1999). Enigma of the peripheral benzodiazepine receptor. Pharmacological Reviews 51, 629650.Google ScholarPubMed
Geary, T. G., Klein, R. D., Vanover, L., Bowman, J. W. and Thompson, D. P. (1992). The nervous system of helminths as target for drugs. Journal of Parasitology 78, 215230.CrossRefGoogle ScholarPubMed
Hirsch, J. D., Beyer, C. F., Malkowitz, L., Loullis, C. C. and Blume, A. J. (1988). Characterization of ligand binding to mitochondrial benzodiazepine receptors. Molecular Pharmacology 34, 164172.Google Scholar
Holden-Dye, L., Krogsgaard-Larsen, P., Nielsen, L. and Walker, R. J. (1989). GABA receptors on the somatic muscle cells of the parasitic nematode Ascaris suum: stereoselectivity indicates similarity to a GABAA-type agonist recognition site. British Journal of Pharmacology 98, 841850.CrossRefGoogle ScholarPubMed
Johnson, C. D. and Stretton, A. O. W. (1987). GABA-like immunoreactivity in inhibitory motor neurons of the nematode Ascaris. Journal of Neuroscience 7, 223235.CrossRefGoogle Scholar
Keenan, L., Koopowitz, H. and Bernardo, K. (1979). Primitive nervous systems: action of aminergic drugs and blocking agents on activity in the ventral nerve cord of the flatworm Notoplana acticola. Journal of Neurobiology 10, 397407.CrossRefGoogle ScholarPubMed
Lopes, D. V. S., Caruso, R. R. B., Castro, N. G., Costa, P. R. R., da Silva, A. J. M. and Noël, F. (2004). Characterization of 2-Methoxy-3,8,9-Trihydroxy Coumestan, a new synthetic isoflavonoid with inverse agonist activity at the central benzodiazepine receptor. European Journal of Pharmacology 495, 8796.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein Measurement with the Folin Phenol Reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Lueddens, H. W. and Skolnick, P. (1987). ‘Peripheral-type’ benzodiazepine receptors in the kidney: regulation of radioligand binding by anions and DIDS. European Journal of Pharmacology 133, 205214.CrossRefGoogle ScholarPubMed
Maguire, P. A., Villar, H. O., Davies, M. F. and Loew, G. H. (1992). Thermodynamic analysis of binding to the cerebellar type I benzodiazepine receptor. European Journal of Pharmacology 226, 233238.CrossRefGoogle Scholar
Martin, R. J. (1987). The γ-aminobutyric acid of Ascaris as a target for anthelmintics. Biochemical Society Transactions 17, 6165.CrossRefGoogle Scholar
McEnery, M. W., Snowman, A. M., Trifiletti, R. R. and Snyder, S. H. (1992). Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proceedings of the National Academy of Sciences, USA 89, 31703174.CrossRefGoogle ScholarPubMed
McIntire, S. L., Jorgensen, E., Kaplan, J. and Horvitz, H. R. (1993). The GABAergic nervous system of Caenorhabditis elegans. Nature, London 364, 337341.CrossRefGoogle ScholarPubMed
McKernan, R. M., Wafford, K., Quirk, K., Hadingham, K. L., Harley, E. A., Ragan, C. I. and Whiting, P. J. (1995). The pharmacology of the benzodiazepine site of the GABA-A receptor is dependent on the type of gamma-subunit present. Journal of Receptor and Signal Transduction Research 15, 173183.CrossRefGoogle ScholarPubMed
Mendonça-Silva, D. L., Gardino, P. F., Kubrusly, R. C. C., de Mello, F. G. and Noël, F. (2004). Characterization of a GABAergic neurotransmission in adult Schistosoma mansoni. Parasitology 129, 110.CrossRefGoogle ScholarPubMed
Mendonça-Silva, D. L., Pessôa, R. F. and Noël, F. (2002). Evidence for the presence of glutamatergic receptors in adult Schistosoma mansoni. Biochemical Pharmacology 64, 13371344.CrossRefGoogle ScholarPubMed
Möhler, H., Crestani, F. and Rudolph, U. (2001). GABAA receptor subtypes: a new pharmacology. Current Opinion in Pharmacology 1, 2225.CrossRefGoogle ScholarPubMed
Moragues, N., Ciofi, P., Tramu, G. and Garret, M. (2002). Localization of GABAA receptor ε-subunit in cholinergic and aminergic neurones and evidence for co-distribution with the θ-subunit in rat brain. Neuroscience 111, 657669.CrossRefGoogle ScholarPubMed
Olson, J. M., Ciliax, B. J., Mancini, W. R. and Young, A. B. (1988). Presence of peripheral-type benzodiazepine binding sites on human erythrocyte membranes. European Journal of Pharmacology 152, 4753.CrossRefGoogle ScholarPubMed
Papadopoulos, V., Boujrad, N., Ikonomovic, M. D., Ferrara, P. and Vidic, B. (1994). Topography of the Leydig cell mitochondrial peripheral-type benzodiazepine receptor. Molecular and Cellular Endocrinology 104, R59.CrossRefGoogle ScholarPubMed
Santos, T. M., Johnston, D. A., Azevedo, V., Ridgers, I. L., Martinez, M. F., Marotta, G. B., Santos, R. L., Fonseca, S. J., Ortega, J. M., Rabelo, E. M., Saber, M., Ahmed, H. M., Romeih, M. H., Franco, G. R., Rollinson, D. and Pena, S. D. (1999). Analysis of the gene expression profile of Schistosoma mansoni cercariae using the expressed sequence tag approach. Molecular and Biochemical Parasitology 103, 7997.CrossRefGoogle ScholarPubMed
Sattelle, D. B., Lummis, S. C., Wong, J. F. and Rauh, J. J. (1991). Pharmacology of insect GABA receptors. Neurochemical Research 16, 363374.CrossRefGoogle ScholarPubMed
Smith, G. B. and Olsen, R. W. (1995). Functional domains of GABAA receptors. Trends in Pharmacological Sciences 16, 162168.CrossRefGoogle ScholarPubMed
Stohler, H. R. (1978). Ro11-3128, a novel schistosomicidal compound. In Current chemotherapy. Proceedings of the 10th International Congress of Chemotherapy (ed. Siegenhaler, W. and Luthy, R.) vol. 1., pp. 147148. American Society for Microbiology, Washington DC.Google Scholar
Verjovski-Almeida, S., DeMarco, R., Martins, E. A., Guimarães, P. E., Ojopi, E. P., Paquola, A. C., Piazza, J. P., Nishiyama, M. Y. Jr., Kitajima, J. P., Adamson, R. E., Ashton, P. D., Bonaldo, M. F., Coulson, P. S., Dillon, G. P., Farias, L. P., Gregorio, S. P., Ho, P. L., Leite, R. A., Malaquias, L. C. C., Marques, R. C. P., Miyasato, P. A., Nascimento, A. L. T. O., Ohlweiler, F. P., Reis, E. M., Ribeiro, M. A., , R. G., Stukart, G. C., Soares, M. B., Gargioni, C., Kawano, T., Rodrigues, V., Madeira, A. M. B. N., Wilson, R. A., Menck, C. F. M., Setubal, J. C., Leite, L. C. C. and Dias-Neto, E. (2003). Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni. Nature Genetics 35, 148157.CrossRefGoogle ScholarPubMed
Walker, R. J., Brooks, H. L. and Holden-Dye, L. (1996). Evolution and overview of classical transmitter molecules and their receptors. Parasitology 113, S3S33.CrossRefGoogle ScholarPubMed
Woods, M. J. and Williams, D. C. (1996). Multiple forms and locations for the peripheral-type benzodiazepine receptor. Biochemical Pharmacology 52, 18051814.CrossRefGoogle ScholarPubMed