Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T19:29:35.743Z Has data issue: false hasContentIssue false

Characterization of D-glucose transport in Trypanosoma rangeli

Published online by Cambridge University Press:  10 August 2006

L. C. MILETTI
Affiliation:
Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brasil
L. B. KOERICH
Affiliation:
Departamento de Microbiologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brasil
L. K. PACHECO
Affiliation:
Departamento de Microbiologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brasil
M. STEINDEL
Affiliation:
Departamento de Microbiologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brasil
B. U. STAMBUK
Affiliation:
Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brasil

Abstract

Like in other trypanosomatids D-glucose is a crucial source of energy to Trypanosoma rangeli, a non-pathogenic parasite that in Central and South America infects triatomine vectors and different mammalian species, including humans. In several trypanosome species, D-glucose transporters were already described and cloned. In this study, we characterized the D-glucose transport activity present in 2 life-stage forms of T. rangeli (epimastigotes and trypomastigotes) using D-[U-14C]glucose as substrate. Our results indicate that T. rangeli transports D-glucose with high affinity in both epimastigote (Km 30 μM) and trypomastigotes (Km 80 μM) life-forms. Both transport activities were inhibited by Cytochalasin B and Phloretin, indicating that probably D-glucose uptake in T. rangeli is mediated by facilitated diffusion of the sugar. Significant differences were observed between epimastigotes and trypomastigotes in relation to their affinity for D-glucose analogues, and the predicted amino acid sequence of a putative D-glucose transporter from T. rangeli (TrHT1) showed a larger identity with the T. cruziD-glucose transporter encoded by the TcrHT1 gene than with other transporters already characterized in trypanosomatids.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amorim, M. I., Momen, H. and Traub-Cseko, Y. M. ( 1993). Trypanosoma rangeli: sequence analysis of beta-tubulin gene suggests closer relationship to Trypanosoma brucei than to Trypanosoma cruzi. Acta Tropica 53, 99105.CrossRefGoogle Scholar
Azema, L., Claustre, S., Alric, I., Blonski, C., Willson, M., Perie, J., Baltz, T., Tetaud, E., Bringaud, F., Cottem, D., Opperdoes, F. R. and Barrett, M. P. ( 2004). Interaction of substituted hexose analogues with the Trypanosoma brucei hexose transporter. Biochemical Pharmacology 67, 459467.CrossRefGoogle Scholar
Bakker, B. M., Walsh, M. C., Ter Kuile, B. H., Mensonides, F. I., Michels, P. A., Opperdoes, F. R. and Westerhoff, H. V. ( 1999). Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. Proceedings of National Academy of Sciences, USA 96, 1009810103.CrossRefGoogle Scholar
Barrett, M. P., Tetaud, E., Seyfang, A., Bringaud, F. and Baltz, T. ( 1995). Functional expression and characterization of the Trypanosoma brucei procyclic glucose transporter, THT2. The Biochemical Journal 312, 687691.CrossRefGoogle Scholar
Barrett, M. P., Tetaud, E., Seyfang, A., Bringaud, F. and Baltz, T. ( 1998). Trypanosome glucose transport. Molecular and Biochemical Parasitolology 91, 195205.CrossRefGoogle Scholar
Bayele, H. K. ( 2001). Triazinyl derivatives that are potent inhibitors of glucose transport in Trypanosoma brucei. Parasitology Research 87, 911914.Google Scholar
Bringaud, F. and Baltz, T. ( 1993). Differential regulation of two distinct families of glucose transporter genes in Trypanosoma brucei. Molecular and Cellular Biology 13, 11461154.CrossRefGoogle Scholar
Bringaud, F. and Baltz, T. ( 1994). African trypanosome glucose transporter genes: Organization and evolution of a multigene family. Molecular Biology and Evolution 11, 220230.Google Scholar
Burchmore, R. J. S. and Hart, D. T. ( 1995). Glucose transport in amastigotes and promastigotes of Leishmania mexicana mexicana. Molecular and Biochemical Parasitology 74, 7786.CrossRefGoogle Scholar
Bursell, E. ( 1981). The role of proline in energy metabolism In Energy Metabolism in Insects ( ed. Downer, R. G. H.), pp. 135154. Plenum Press, New York.
Coura, J. R., Fernandes, O., Arboleda, M., Barrett, T. V., Carrara, N., Degrave, W. and Campbell, D. A. ( 1996). Human infection by Trypanosoma rangeli in Brazilian Amazon. Transactions of Royal Society of Tropical Medicine and Hygiene 90, 278279.CrossRefGoogle Scholar
Cuba, C. A. C. ( 1998). Revisión de los aspectos biológicos y diagnósticos del Trypanosoma (Herpetosoma) rangeli. Revista da Sociedade Brasileira de Medicina Tropical 31, 207220.CrossRefGoogle Scholar
D'Alessandro, A. and Saravia, N. G. ( 1992). Trypanosoma rangeli. In Parasitic Protozoa ( ed. Kreier, J. P. and Baker, J.), pp. 154. Academic Press, Oxford.
De Santa Izabel, A., Vermelho, A. B. and Branquinha, M. H. ( 2004). Proteolytic activities in Trypanosoma rangeli and stercorarian trypanosomes: taxonomic implications. Parasitology Research 94, 342348.CrossRefGoogle Scholar
Eisenthal, R., Game, S. and Holman, G. D. ( 1989). Specificity and kinetics of hexose transport in Trypanosoma brucei. Biochimica et Biophysica Acta 985, 8189.CrossRefGoogle Scholar
Grisard, E. C., Steindel, M., Guarneri, A. A., Eger-Mangrich, I., Campbell, D. A. and Romanha, A. J. ( 1999). Characterization of Trypanosoma rangeli strains isolated in Central and South America: An overview. Memórias do Instituto Oswaldo Cruz 94, 203209.CrossRefGoogle Scholar
Grisard, E. C. ( 2002). Salivaria or Stercoraria? The Trypanosoma rangeli dilemma. Kinetoplastid Biology and Disease 1, 5.CrossRefGoogle Scholar
Gruenberg, J., Sharma, P. R. and Deshusses, J. ( 1978). d-Glucose transport in Trypanosoma brucei. European Journal of Biochemistry 89, 461469.CrossRefGoogle Scholar
Guhl, F. and Vallejo, G. A. ( 2003). Trypanosoma (Herpetosoma) rangeli Tejera,1920 – An update review. Memórias do Instituto Oswaldo Cruz 98, 435442.CrossRefGoogle Scholar
Knodler, L. A., Schofield, P. J. and Edwards, M. R. ( 1992). Glucose transport in Crithidia luciliae. Molecular and Biochemical Parasitology 52, 114.CrossRefGoogle Scholar
Koerich, L. B., Emanuelle-Neto, P., Santos, K., Grisard, E. C. and Steindel, M. ( 2002). Differentiation of Trypanosoma rangeli: high production of infective trypomastigotes forms in vitro. Parasitology Research 88, 2125.Google Scholar
Langford, C. K., Burchmore, R. J. S., Hart, D. T., Wagner, W. and Landfear, S. M. ( 1994). Biochemistry and molecular genetics of Leishmania glucose transporters. Parasitology 108 (Suppl.), S73S83.CrossRefGoogle Scholar
Munoz-Antonia, T., Richards, F. F. and Ullu, E. ( 1991). Differences in glucose transport between bloodstream and procyclic forms of Trypanosoma brucei rhodesiense. Molecular and Biochemical Parasitology 47, 7382.CrossRefGoogle Scholar
Osorio, Y., Travi, B., Palma, G. I. and Saravia, N. G. ( 1995). Infectivity of Trypanosoma rangeli in a promonocitic mammalian cell line. Journal of Parasitology 81, 687693.CrossRefGoogle Scholar
Ramirez, L. E., Machado, M. I., Maywald, P. G., Matos, A., Chiari, E. and Silva, E. L. ( 1998). First evidence of Trypanosoma rangeli in the southeast of Brazil, an endemic region for Chagas' disease. Revista da Sociedade Brasileira de Medicina Tropical 31, 99102.CrossRefGoogle Scholar
Silber, A. M., Tonelli, R. R., Martinelli, M., Colli, W. and Alves, M. J. M. ( 2002). Active transport of l-proline in Trypanosoma cruzi. Journal of Eukaryotic Microbiology 49, 441446.CrossRefGoogle Scholar
Snoeijer, C. Q., Picchi, G. F., Dambros, B. P., Steindel, M., Goldenberg, S., Fragoso, S. P., Lorenzini, D. M. and Grisard, E. C. ( 2004). Trypanosoma rangeli Transcriptome Project: Generation and analysis of expressed sequence tags. Kinetoplastid Biology and Disease 3, 1.CrossRefGoogle Scholar
Szablewski, L. ( 2000). Facilitated hexose diffusion in kinetoplastida. Acta Protozoologica 39, 183189.Google Scholar
Ter Kuile, B. H. ( 1997). Adaptation of metabolic enzyme activities of Trypanosoma brucei promastigotes to growth rate and carbon regimen. Journal of Bacteriology 179, 46994705.CrossRefGoogle Scholar
Ter Kuile, B. H. and Opperdoes, F. R. ( 1991). Glucose uptake by Trypanosoma brucei. Rate-limiting steps in glycolysis and regulation of the glycolytic flux. Journal of Biological Chemistry 266, 857862.Google Scholar
Tetaud, E., Bringaud, F., Chabas, S., Barrett, M. P. and Baltz, T. ( 1994). Characterization of glucose transport and cloning of a hexose transport gene in Trypanosoma cruzi. Proceedings of the National Academy Sciences, USA 91, 82788282.CrossRefGoogle Scholar
Tetaud, E., Barrett, M. P., Bringaud, F. and Baltz, T. ( 1997). Kinetoplastid glucose transporters. The Biochemical Journal 325, 569580.CrossRefGoogle Scholar
Urdaneta-Morales, S. and Tejero, F. ( 1986). Trypanosoma (Herpetosoma) rangeli Tejera, 1920. Intracellular amastigote stages of reproduction in white mice. Revista do Instituto de Medicina Tropical de São Paulo 28, 166169.CrossRefGoogle Scholar
Vallejo, G. A., Guhl, F., Carranza, J. C., Lozano, L. E., Sánchez, J. L., Jaramilo, J. C., Galtero, D., Castaneda, N., Silva, J. C. and Steindel, M. ( 2002). kDNA markers define two major Trypanosoma rangeli lineages in Latin-America. Acta Tropica 81, 7782.CrossRefGoogle Scholar
Vedrenne, C., Bringaud, F., Barret, M. P., Tetaud, E. and Baltz, T. ( 2000). The structure-function relationship of functionally distinct but structurally similar hexose transporters from Trypanosoma congolense. European Journal of Biochemistry 267, 48504860.CrossRefGoogle Scholar
Waitumbi, J. N., Tetaud, E. and Baltz, T. ( 1996). Glucose uptake in Trypanosoma vivax and molecular characterization of its transporter gene. European Journal of Biochemistry 237, 234239.CrossRefGoogle Scholar