Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T00:44:31.020Z Has data issue: false hasContentIssue false

Characterization of biochemical properties of a selenium-independent glutathione peroxidase of Cryptosporidium parvum

Published online by Cambridge University Press:  13 December 2013

J.-M. KANG
Affiliation:
Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660–751, Korea
H.-L. JU
Affiliation:
Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660–751, Korea
W.-M. SOHN
Affiliation:
Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660–751, Korea
B.-K. NA*
Affiliation:
Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660–751, Korea
*
* Corresponding author: Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660–751, Korea. E-mail: [email protected]

Summary

Glutathione peroxidase (GPx; EC 1.11.1.9) is an important antioxidant enzyme that catalyses the reduction of organic and inorganic hydroperoxides to water in oxygen-consuming organisms, using glutathione as an electron donor. Here, we report the characterization of a GPx of Cryptosporidium parvum (CpGPx). CpGPx contained a standard UGU codon for cysteine instead of a UGA opal codon for seleno-cysteine (SeCys) at the active site, and no SeCys insertion sequence (SECIS) motif was identified within the 3′-untranslated region (UTR) of CpGPx, which suggested its selenium-independent nature. In silico and biochemical analyses indicated that CpGPx is a cytosolic protein with a monomeric structure. Recombinant CpGPx was active over a wide pH range and was stable under physiological conditions. It showed a substrate preference against organic hydroperoxides, such as cumene hydroperoxide and t-butyl hydroperoxide, but it also showed activity against inorganic hydroperoxide, hydrogen peroxide. Recombinant CpGPx was not inhibited by potassium cyanide or by sodium azide. The enzyme effectively protected DNA and protein from oxidative damage induced by hydrogen peroxide, and was functionally expressed in various developmental stages of C. parvum. These results collectively suggest the essential role of CpGPx for the parasite's antioxidant defence system.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andricopulo, A. D., Akoachere, M. B., Krogh, R., Nickel, C., McLeish, M. J., Kenyon, G. L., Arscott, L. D., Williams, C. H. Jr., Davioud-Charvet, E. and Becker, K. (2006). Specific inhibitors of Plasmodium falciparum thioredoxin reductase as potential antimalarial agents. Bioorganic and Medicinal Chemistry Letters 16, 22832292.CrossRefGoogle ScholarPubMed
Aumann, K.-D., Bedorf, N., Brigelius-Flohé, R., Schomburg, D. and Flohé, L. (1997). Glutathione peroxidase revisited − simulation of the catalytic cycle by computer-assisted molecular modelling. Biomedical and Environmental Sciences 10, 136155.Google ScholarPubMed
Awasthi, Y. C., Dao, D. D., Lal, A. K. and Srivastava, S. K. (1979). Purification and properties of glutathione peroxidase from human placenta. Biochemical Journal 177, 471476.CrossRefGoogle ScholarPubMed
Borowski, H., Thompson, R. C., Armstrong, T. and Clode, P. L. (2010). Morphological characterization of Cryptosporidium parvum life-cycle stages in an in vitro model system. Parasitology 137, 1326.CrossRefGoogle Scholar
Boucher, I. W., Brzozowski, A. M., Brannigan, J. A., Schnick, C., Smith, D. J., Kyes, S. A. and Wilkinson, A. J. (2006). The crystal structure of superoxide dismutase from Plasmodium falciparum . BMC Structural Biology 6, 20.CrossRefGoogle ScholarPubMed
Chatterjee, A., Banerjee, S., Steffen, M., O'Connor, R. M., Ward, H. D., Robbins, P. W. and Samuelson, J. (2010). Evidence for mucin-like glycoproteins that tether sporozoites of Cryptosporidium parvum to the inner surface of the oocyst wall. Eukaryotic Cell 9, 8496.CrossRefGoogle Scholar
Entrala, E., Mascaro, C. and Barrett, J. (1997). Anti-oxidant enzymes in Cryptosporidium parvum oocysts. Parasitology 114, 1317.CrossRefGoogle ScholarPubMed
Flohé, L., Günzler, W. A., Jung, G., Schaich, E. and Schneider, F. (1971). Glutathione peroxidase. II. Substrate specificity and inhibitory effects of substrate analogues. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 352, 159169.CrossRefGoogle ScholarPubMed
Flohé, L., Hecht, H. J. and Steinert, P. (1999). Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radical Biology and Medicine 27, 966984.CrossRefGoogle ScholarPubMed
Gaber, A., Tamoi, M., Takeda, T., Nakano, Y. and Shigeoka, S. (2001). NADPH-dependent glutathione peroxidase-like proteins (Gpx-1, Gpx-2) reduce unsaturated fatty acid hydroperoxides in Synechocystis PCC 6803. FEBS Letters 499, 3236.CrossRefGoogle ScholarPubMed
Heiges, M., Wang, H., Robinson, E., Aurrecoechea, C., Gao, X., Kaluskar, N., Rhodes, P., Wang, S., He, C. Z., Su, Y., Miller, J., Kraemer, E. and Kissinger, J. C. (2006). CryptoDB: a Cryptosporidium bioinformatics resource update. Nucleic Acids Research 34, D419D422.CrossRefGoogle ScholarPubMed
Herbette, S., Lenne, C., Leblanc, N., Julien, J. L., Drevet, J. R. and Roeckel-Drevet, P. (2002). Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. European Journal of Biochemistry 269, 24142420.CrossRefGoogle ScholarPubMed
Herbette, S., Roeckel-Drevet, P. and Drevet, J. R. (2007). Seleno-independent glutathione peroxidases. More than simple antioxidant scavengers. FEBS Journal 274, 21632180.CrossRefGoogle ScholarPubMed
Jones, J. T., Reavy, B., Smant, G. and Prior, A. E. (2004). Glutathione peroxidases of the potato cyst nematode Globodera rostochiensis . Gene 324, 4754.CrossRefGoogle ScholarPubMed
Joung, M., Yoon, S., Choi, K., Kim, J. Y., Park, W. Y. and Yu, J. R. (2011). Characterization of the thioredoxin peroxidase from Cryptosporidium parvum . Experimental Parasitology 129, 331336.CrossRefGoogle ScholarPubMed
Jung, B. G., Lee, K. O., Lee, S. S., Chi, Y. H., Jang, H. H., Kang, S. S., Lee, K., Lim, D., Yoon, S. C., Yun, D. J., Inoue, Y., Cho, M. J. and Lee, S. Y. (2002). A chinese cabbage cDNA with high sequence identity to phospholipid hydroperoxide glutathione peroxidases encodes a novel isoform of thioredoxin-dependent peroxidase. Journal of Biological Chemistry 277, 1257212578.CrossRefGoogle ScholarPubMed
Kang, J. M., Cheun, H. I., Kim, J., Moon, S. U., Park, S. J., Kim, T. S., Sohn, W. M. and Na, B. K. (2008). Identification and characterization of a mitochondrial iron-superoxide dismutase of Cryptosporidium parvum . Parasitology Research 103, 787795.CrossRefGoogle ScholarPubMed
Kang, J. M., Ju, H. L., Sohn, W. M. and Na, B. K. (2011). Molecular cloning and characterization of a M17 leucine aminopeptidase of Cryptosporidium parvum . Parasitology 18, 19.Google Scholar
Leitch, G. J. and He, Q. (1999). Reactive nitrogen and oxygen species ameliorate experimental cryptosporidiosis in the neonatal BALB/c mouse model. Infection and Immunity 67, 58855891.CrossRefGoogle ScholarPubMed
Lobanov, A. V., Delgado, C., Rahlfs, S., Novoselov, S. V., Kryukov, G. V., Gromer, S., Hatfield, D. L., Becker, K. and Gladyshev, V. N. (2006). The Plasmodium selenoproteome. Nucleic Acids Research 34, 496505.CrossRefGoogle ScholarPubMed
Maiorino, M., Ursini, F., Bosello, V., Toppo, S., Tosatto, S. C., Mauri, P., Becker, K., Roveri, A., Bulato, C., Benazzi, L., De Palma, A. and Flohé, L. (2007). The thioredoxin specificity of Drosophila GPx: a paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases. Journal of Molecular Biology 365, 10331046.CrossRefGoogle ScholarPubMed
Mauzy, M. J., Enomoto, S., Lancto, C. A., Abrahamsen, M. S. and Rutherford, M. S. (2012). The Cryptosporidium parvum transcriptome during in vitro development. PLoS ONE 7, e31715.CrossRefGoogle ScholarPubMed
Mehlotra, R. K. (1996). Antioxidant defense mechanisms in parasitic protozoa. Critical Reviews in Microbiology 22, 295314.CrossRefGoogle ScholarPubMed
Na, B. K., Kang, J. M., Kim, T. S. and Sohn, W. M. (2007). Plasmodium vivax: molecular cloning, expression and characterization of glutathione S-transferase. Experimental Parasitology 116, 414418.CrossRefGoogle ScholarPubMed
Nickel, C., Rahlfs, S., Deponte, M., Koncarevic, S. and Becker, K. (2006). Thioredoxin networks in the malarial parasite Plasmodium falciparum . Antioxidants and Redox Signaling 8, 12271239.CrossRefGoogle ScholarPubMed
Ohno, Y. and Gallin, J. I. (1985). Diffusion of extracellular hydrogen peroxide into intracellular compartments of human neutrophils. Studies utilizing the inactivation of myeloperoxidase by hydrogen peroxide and azide. Journal of Biological Chemistry 260, 843846.CrossRefGoogle ScholarPubMed
Prohaska, J. R., Oh, S. H., Hoekstra, W. G. and Ganther, H. E. (1977). Glutathione peroxidase: inhibition by cyanide and release of selenium. Biochemical and Biophysical Research Communications 74, 6971.CrossRefGoogle ScholarPubMed
Shahiduzzaman, M., Dyachenko, V., Obwaller, A., Unglaube, S. and Daugschies, A. (2009). Combination of cell culture and quantitative PCR for screening of drugs against Cryptosporidium parvum . Veterinary Parasitology 162, 271277.CrossRefGoogle ScholarPubMed
Singh, A. and Rathaur, S. (2005). Identification and characterization of a selenium-dependent glutathione peroxidase in Setaria cervi . Biochemical and Biophysical Research Communications 331, 10691074.CrossRefGoogle ScholarPubMed
Stack, C. M., Lowther, J., Cunningham, E., Donnelly, S., Gardiner, D. L., Trenholme, K. R., Skinner-Adams, T. S., Teuscher, F., Grembecka, J., Mucha, A., Kafarski, P., Lua, L., Bell, A. and Dalton, J. P. (2007). Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development. Journal of Biological Chemistry 282, 20692080.CrossRefGoogle ScholarPubMed
Sun, W., Song, X., Yan, R., Xu, L. and Li, X. (2012). Cloning and characterization of a selenium-independent glutathione peroxidase (HC29) from adult Haemonchus contortus . Journal of Veterinary Science 13, 4958.CrossRefGoogle ScholarPubMed
Sztajer, H., Gamain, B., Aumann, K. D., Slomianny, C., Becker, K., Brigelius-Flohé, R. and Flohé, L. (2001). The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. Journal of Biological Chemistry 276, 73977403.CrossRefGoogle ScholarPubMed
Tang, L., Gounaris, K., Griffiths, C. and Selkirk, M. E. (1995). Heterologous expression and enzymatic properties of a selenium-independent glutathione peroxidase from the parasitic nematode Brugia pahangi . Journal of Biological Chemistry 270, 1831318318.CrossRefGoogle ScholarPubMed
Toppo, S., Vanin, S., Bosello, V. and Tosatto, S. C. (2008). Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxidants and Redox Signaling 10, 15011514.CrossRefGoogle ScholarPubMed
Tzipori, S. and Ward, H. (2002). Cryptosporidosis: biology, pathogenesis and disease. Microbes and Infection 4, 10471058.CrossRefGoogle Scholar
Vernet, P., Rock, E., Mazur, A., Rayssiguier, Y., Dufaure, J. P. and Drevet, J. R. (1999). Selenium-independent epididymis-restricted glutathione peroxidase 5 protein (GPX5) can back up failing Se-dependent GPXs in mice subjected to selenium deficiency. Molecular Reproduction and Development 54, 362370.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Wanyiri, J. W., O'Connor, R., Allison, G., Kim, K., Kane, A., Qiu, J., Plaut, A. G. and Ward, H. D. (2007). Proteolytic processing of the Cryptosporidium glycoprotein gp40/15 by human furin and by a parasite-derived furin-like protease activity. Infection and Immunity 75, 184192.CrossRefGoogle ScholarPubMed
Wilkinson, S. R. and Kelly, J. M. (2003). The role of glutathione peroxidases in trypanosomatids. Biological Chemistry 384, 517525.CrossRefGoogle ScholarPubMed
Wilkinson, S. R., Meyer, D. J. and Kelly, J. M. (2000). Biochemical characterization of a trypanosome enzyme with glutathione-dependent peroxidase activity. Biochemical Journal 352, 755761.CrossRefGoogle ScholarPubMed
Wilkinson, S. R., Prathalingam, S. R., Taylor, M. C., Ahmed, A., Horn, D. and Kelly, J. M. (2006). Functional characterisation of the iron superoxide dismutase gene repertoire in Trypanosoma brucei . Free Radical Biology and Medicine 40, 198209.CrossRefGoogle ScholarPubMed
Wilson, R. J., Williamson, D. H. and Preiser, P. (1994). Malaria and other Apicomplexans: the “plant” connection. Infectious Agents and Disease 3, 2937.Google ScholarPubMed
Xu, P., Widmer, G., Wang, Y., Ozaki, L. S., Alves, J. M., Serrano, M. G., Puiu, D., Manque, P., Akiyoshi, D., Mackey, A. J., Pearson, W. R., Dear, P. H., Bankier, A. T., Peterson, D. L., Abrahamsen, M. S., Kapur, V., Tzipori, S. and Buck, G. A. (2004). The genome of Cryptosporidium hominis . Nature 431, 11071112.CrossRefGoogle ScholarPubMed
Yu, Y., Zhang, H. and Zhu, G. (2010). Plant-type trehalose synthetic pathway in Cryptosporidium and some other apicomplexans. PLoS ONE 5, e12593.CrossRefGoogle ScholarPubMed