Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T17:32:09.410Z Has data issue: false hasContentIssue false

Characterization of a major surface-associated excretory–secretory antigen of Trichinella spiralis larvae with antibodies to keyhole limpet haemocyanin

Published online by Cambridge University Press:  06 April 2009

J. Modha
Affiliation:
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ
W. M. Robertson
Affiliation:
Department of Zoology, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA
M. W. Kennedy
Affiliation:
Wellcome Laboratories for Experimental Parasitology, University of Glasgow, Bearsden, Glasgow G61 1QH
J. R. Kusel
Affiliation:
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ

Summary

A multi-subunit antigen (native Mr > 200 kDa, reduced Mr 97–100 kDa) has been identified in homogenates of Trichinella spiralis larvae using affinity-purified rabbit anti-keyhole limpet haemocyanin (KLH) antibodies and its cross-reactivity with KLH was confirmed by competition blotting. The antigen was not present at the larval surface but was exposed after treatment of the larvae with the detergent cetyltrimethyl ammonium bromide (CTAB) which removed the surface coat. This correlated with a significant decrease in insertion of the surface-restricted fluorescent lipid probe AF18, indicating that the surface coat must be lipidic in nature. Unlike KLH, the larval antigen blotted onto nitrocellulose was itself periodate insensitive. Periodate treatment of whole larvae, however, resulted in shedding of the surface, to which anti-KLH antibodies then bound intensely. Anti-KLH antibodies also recognized three (49, 55, 108 kDa) of the four most dominant antigens in excretory–secretory (ES) products of cultured larvae, whose excretion–secretion was increased with CTAB. The nature, location and function of the antigen is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almond, N. M., McLaren, D. J. & Parkhouse, R. M. E. (1986). A comparison of the surface and secretions of Trichinella pseudospiralis and T. spiralis. Parasitology 93, 163–76.Google Scholar
Alves-Brito, C. F., Simpson, A. J. G., Bahia-Oliveira, L. M. G., Rabello, A. L. T., Rocha, R. S., Lambertucci, J. R., Gazzinelli, G., Katz, N. & Correa-Oliveira, R. (1992). Analysis of anti-keyhole limpet haemocyanin antibody in Brazilians supports its use for the diagnosis of acute schistosomiasis mansoni. Transactions of the Royal Society of Tropical Medicine and Hygiene 86, 53–6.CrossRefGoogle ScholarPubMed
Appleton, J. A., Bell, R. G., Homan, W. & Van Knapen, F. (1991). Consensus on Trichinella spiralis antigens and antibodies. Parasitology Today 7, 190–2.Google Scholar
Appleton, J. A. & Usack, L. (1993). Identification of potential antigenic targets for rapid expulsion of Trichinella spiralis. Molecular and Biochemical Parasitology 58, 5362.CrossRefGoogle ScholarPubMed
Betschart, B., Stefan, M. & Glaser, M. (1990). Antibodies against the cuticulin of Ascaris suum cross-react with epicuticular structures of filarial parasites. Acta Tropica 47, 331–8.Google Scholar
Bird, A. F. & Bird, J. (1991). The Structure of Nematodes. London: Academic Press.Google Scholar
Blaxter, M. L., Page, A. P., Rudin, W. & Maizels, R. M. (1992). Nematode surface coats: Actively evading immunity. Parasitology Today 8, 243–7.Google Scholar
Bordier, C. (1981). Phase separation of integral membrane proteins in Triton X-114. Journal of Biological Chemistry 256, 1604–7.Google Scholar
Bradford, M. M. (1976). A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–54.Google Scholar
Cox, G. N. (1990). Molecular biology of the cuticle collagen gene families of Caenorhabditis elegans and Haemonchus contortus. Acta Tropica 47, 269–81.Google Scholar
Cox, G. N. (1992). Molecular and biochemical aspects of nematode collagens. Journal of Parasitology 78, 115.Google Scholar
Curtis, J. E., Hersh, E. M., Harris, J. E., McBride, C. & Freireich, E. J. (1970). The human primary immune response to KLH: interrelationships of delayed hypersensitivity, antibody response and in vitro blast transformation. Clinical and Experimental immunology 6, 473–91.Google Scholar
Dekruyff, R. H., Fang, Y. & Umetsu, D. T. (1992). IL-4 synthesis by in vivo-primed keyhole limpet haemocyanin-specific CD4+ T cells. Journal of Immunology 149, 3468–76.Google Scholar
Else, K. J. & Grencis, R. K. (1991). Helper T-cell subsets in mouse trichuriasis. Parasitology Today 7, 13.Google Scholar
Good, A. H., Wofsy, L., Henry, C. & Kimura, J. (1980). Preparation of hapten-modified protein antigens. In Selected Methods in Cellular Immunology (ed. Mishell, B. & Shiigi, S.), pp. 343347. San Francisco: W. H. Freeman.Google Scholar
Grencis, R. K., Crawford, C. R., Pritchard, D. I., Behnke, J. M. & Wakelin, D. (1986). Immunization of mice with surface antigens from the muscle larvae of Trichinella spiralis. Parasite Immunology 8, 587–96.CrossRefGoogle ScholarPubMed
Grzych, J. M., Dissous, C., Capron, M., Torres, S., Lambert, P. H. & Capron, A. (1987). Schistosoma mansoni shares a protective epitope with keyhole limpet haemocyanin. Journal of Experimental Medicine 165, 865–78.Google Scholar
Homan, W. L., Derksen, A. C. G. & Van Knapen, F. (1992). Identification of diagnostic antigens from Trichinella spiralis. Parasitology Research 78, 112–19.Google Scholar
Jansson, H. B., Jeyaprakash, A., Coles, G. C., Marban-Mendoza, N. & Zuckerman, B. M. (1986). Fluorescent and ferritin labelling of cuticle surface carbohydrates of Caenorhabditis elegans and Panagrellus redivivus. Journal of Nematology 18, 570–4.Google Scholar
Kennedy, M. W., Maizels, R. M., Meghji, M., Young, L., Qureshi, F. & Smith, H. V. (1987). Species-specific and common epitopes on the secreted and surface antigens of Toxocara cati and T. canis infective larvae. Parasite Immunology 9, 407–20.Google Scholar
Khoo, K. H., Maizels, R. M., Page, A. P., Taylor, G. W., Rendell, N. L. B. & Dell, A. (1991). Characterization of nematode glycoproteins: the major O-glycans of Toxocara excretory–secretory antigens are O-methylated trisaccharides. Glycobiology 1, 163–71.Google Scholar
Ko, R. C. & Wong, T. P. (1992). Trichinella spiralis: specificity of ES antigens from pre-encysted larvae. Journal of Helminthology 66, 3844.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of bacteriophage T4, Nature, London 227, 680–5.Google Scholar
Lee, D. L. (1966). The structure and composition of the helminth cuticle. Advances in Parasitology 4, 214–37.Google Scholar
Lee, D. L., Wright, K. A. & Shivers, R. R. (1986). A freeze-fracture study of adult, in utero larvae and infective-stage larvae of the nematode Trichinella (Nematoda). Tissue and Cell 18, 219–30.CrossRefGoogle ScholarPubMed
Maizels, R. M., Blaxter, M. L. & Selkirk, M. E. (1993). Forms and functions of nematode surfaces. Experimental Parasitology 77, 380–4.CrossRefGoogle ScholarPubMed
Maizels, R. M., Kennedy, M. W., Meghji, M., Robertson, B. D. & Smith, H. V. (1987). Shared carbohydrate epitopes on distinct surface and secreted epitopes of the parasitic nematode Toxocara canis. Journal of Immunology 139, 207–14.CrossRefGoogle ScholarPubMed
Mansour, M. M., Omer-Ali, P., Farid, Z., Simpson, A. J. G. & Woody, J. W. (1989). Serological differentiation of acute and chronic schistosomiasis mansoni by antibody responses to keyhole limpet haemocyanin. American Journal of Tropical Medicine 41, 338–44.Google Scholar
McClure, M. A. & Spiegel, Y. (1991). Role of the nematode surface coat in the adhesion of Clavibacter sp. to Anguina funesta and Anguina tritici. Parasitology 103, 421–7.CrossRefGoogle Scholar
Ortega-Pierres, G., Chayeu, H., Clark, N. W. T. & Parkhouse, R. M. E. (1984). The occurrence of antibodies to hidden and exposed determinants of surface antigens of Trichinella spiralis. Parasitology 88, 359–69.Google Scholar
Page, A. P., Rudin, W., Fluri, E., Blaxter, M. L. & Maizels, R. M. (1992). Toxocara canis: a labile antigenic surface coat overlying the epicuticle of infective larvae. Experimental Parasitology 75, 7286.Google Scholar
Politz, S. M. & Philipp, M. (1992). Caenorhabditis elegans as a model for parasitic nematodes: a focus on the cuticle. Parasitology Today 8, 612.Google Scholar
Pritchard, D. I., McKean, P. G. & Rogan, M. T. (1988). Cuticle preparations from Necator americanus and their immunogenicity in the infected host. Molecular and Biochemical Parasitology 28, 275–84.Google Scholar
Proudfoot, L., Kusel, J. R., Smith, H. V., Harnett, W. & Worms, W. J. (1993). Rapid changes in the surface of parasitic nematodes during transition from pre-to post-parasitic forms. Parasitology 107, 107–17.CrossRefGoogle ScholarPubMed
Pryde, J. G. (1986). Triton X-114: a detergent that has come in from the cold. Trends in Biochemical Sciences 11, 160–3.Google Scholar
Robertson, W. M., Topham, P. B. & Smith, P. (1987). Observations on the action of the oesophageal pump in Longidorus (Nematoda). Nematologica 33, 4354.Google Scholar
Silberstein, D. S. & Despommier, D. D. (1984). Antigens from Trichinella spiralis that induce a protective response in the mouse. Journal of Immunology 132, 898904.Google Scholar
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350–4.CrossRefGoogle ScholarPubMed
Urban, J. F., Katona, I. M., Paul, W. E. & Finkelman, F. D. (1991). Interleukin 4 is important in protective immunity to gastrointestinal nematode infection in mice. Proceedings of the National Academy of Sciences, USA 88, 5513–17.Google Scholar
Urban, J. F., Madden, K. B., Svetic, A., Cheever, A., Trotta, P. P., Gause, W. C., Katona, I. A. & Finkelman, F. D. (1992). The importance of Th2 cytokines in protective immunity to nematodes. Immunological Reviews 127, 205–20.CrossRefGoogle ScholarPubMed
Woodward, M. P., Young, W. W. & Bloodgood, R. A. (1985). Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation. Journal of Immunological Methods 78, 143–53.Google Scholar
Wright, K. A. (1987). The nematode's cuticle, its surface and the epidermis: Function, analogy and homology – a current consensus. Journal of Parasitology 73, 1077–83.Google Scholar
Wright, K. A. & Hong, H. (1988). Characterization of the accessory layer of the cuticle of muscle larvae of Trichinella spiralis. Journal of Parasitology 74, 440–51.Google Scholar