Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T01:33:48.506Z Has data issue: false hasContentIssue false

Characterization of a 14 kDa oocyst wall protein of Eimeria tenella and E. acervulina

Published online by Cambridge University Press:  26 March 2010

K.-H. Eschenbacher
Affiliation:
Institut für Allgemeine Mikrobiologie, Universität Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
P. Eggli
Affiliation:
Anatomisches Institut, Medizinische Fakultät, Universität Bern, Bühlstrasse 26, CH-3012 Bern, Switzerland
M. Wallach
Affiliation:
ABIC Ltd Pharmaceutical and Chemical Industries, Industrial Zone, Kiryat Nordau, Natanya, P. O. B. 8077, Israel
R. Braun
Affiliation:
Institut für Allgemeine Mikrobiologie, Universität Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland

Summary

We have extracted a protein of 14 kDa from purified oocyst walls of several Eimeria species. Polyclonal antibodies were raised in rats against the 14 kDa proteins of E. acervulina and E. tenella. On immunoblots these antisera reacted in a highly specific manner with the homologous 14 kDa antigens, but not with heterologous antigens. In addition, specific binding of the two antisera to oocyst wall fragments of E. acervulina and E. tenella was demonstrated by immunofluorescence. Partial amino-terminal sequences comprising 20 amino acid residues were obtained from the 14 kDa oocyst wall proteins of E. acervulina and E. tenella. They are characterized by an abundance of amino acids containing hydroxyl groups in their side chains (serine, tyrosine, threonine). Binding of the oocyst wall protein of E. tenella by peanut agglutinin indicates the presence of O-linked carbohydrates.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J. D. (1989). Molecular Biology of the Cell, 2nd edn. New York: Garland Publishing.Google Scholar
Briza, P., Winkler, G., Kalchhauser, H. & Breitenbach, M. (1986). Dityrosine is a prominent component of the yeast ascospore wall. Journal of Biological Chemistry 261, 4288–94.CrossRefGoogle ScholarPubMed
Chobotar, B. & Scholtyseck, E. (1982). Ultrastructure. In The Biology of the Coccidia (ed. Long, P. L. ), pp. 101165. London: University Park Press.Google Scholar
Fetterer, R. H. & Hill, D. E. (1994). Localization of phenol oxidase in female Trichuris suis. Journal of Parasitology 80, 952–9.CrossRefGoogle ScholarPubMed
Hall, H. C. (1978). Hardening of the sea urchin fertilization envelope by peroxidase-catalyzed phenolic coupling of tyrosines. Cell 15, 343–55.Google Scholar
Harlow, E. & Lane, D. (1988). Antibodies. A Laboratory Manual. Cold Spring Harbor Laboratory. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Hopkins, T. L. & Kramer, K. J. (1992). Insect cuticle sclerotization. Annual Review of Entomology 37, 273302.CrossRefGoogle Scholar
Jeffers, T. K. & Shirley, M. W. (1982). Genetics, specific and infraspecific variation. In The Biology of the Coccidia (ed. Long, P. L. ), pp. 63100. London: University Park Press.Google Scholar
Johnson, K. S., Taylor, D. W. & Cordingley, J. S. (1987). Possible eggshell protein gene from Schistosoma mansoni. Molecular and Biochemical Parasitology 22, 89100.Google Scholar
Kirschner, R. H. (1978). High resolution scanning electron microscopy of isolated cell organelles. In Principles and Techniques of Scanning Electron Microscopy (ed. Hayat, M. A. ), pp. 278296. New York: Van Nostrand Reinhold Company.Google Scholar
Lally, N. C., Baird, C. D., McQuay, S. J., Wright, F. & Oliver, J. J. (1992). A 2359-base pair DNA fragment from Cryptosporidium parvum encoding a repetitive oocyst protein. Molecular and Biochemical Parasitology 56, 6978.CrossRefGoogle ScholarPubMed
Levine, N. D. (1982). Taxonomy and life cycles of coccidia. In The Biology of the Coccidia (ed. Long, P. L.), pp. 133. London: University Park Press.Google Scholar
Long, P. L. & Joyner, L. P. (1984). Problems in the identification of species of Eimeria. Journal of Protozoology 31, 535–41.Google Scholar
Lotan, R., Skutelski, E., Danon, D. & Sharon, N. (1975). The purification, composition and specifity of the anti-T lectin from peanut (Arachis hypogaea). Journal of Biological Chemistry 250, 8518–23.Google Scholar
Macpherson, J. M. & Gajadhar, A. A. (1993). Differentiation of seven Eimeria species by random amplified polymorphic DNA. Veterinary Parasitology 45, 257–66.CrossRefGoogle ScholarPubMed
Michalski, W. P., Prowse, S. J., Bacic, A. & Fahey, K. J. (1993). Molecular characterization of peanut agglutinin binding glycoproteins from Eimeria tenella. International Journal for Parasitology 23, 985–95.Google Scholar
Monne, L. & Hönlg, G. (1954). On the properties of the shells of the coccidian oocysts. Arkiv for Zoologi (Uppsala), 251–6.Google Scholar
Ranucci, L. R., Muller, H. M., Larosa, C. L., Reckmann, I. R., Gomez Morales, M. G., Pozio, E. P., Spano, F. S. & Crisanti, A. A. (1993). Characterization and immunolocalization of a Cryptosporidium protein containing repeated amino acid motifs. Infection and Immunity 61, 2347–56.Google Scholar
Russel, D. G. & Sinden, R. E. (1981). The role of the cytoskeleton in the motility of coccidian sporozoites. Journal of Cell Science 50, 345–59.Google Scholar
Schagger, H. & von Jacow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry 166, 368–79.CrossRefGoogle ScholarPubMed
Schmatz, D. M. (1989). The mannitol cycle-a new metabolic pathway in the coccidia. Parasitology Today 5, 205–8.CrossRefGoogle ScholarPubMed
Seed, J. L. & Bennett, J. L. (1980). Schistosoma mansoni: phenol oxidase's role in eggshell formation. Experimental Parasitology 49, 430–41.Google Scholar
Stotish, R. L., Wang, C. C. & Meyenhofer, M. (1978). Structure and composition of the oocyst wall of Eimeria tenella. Journal of Parasitology 64, 1074–81.Google Scholar
Stucki, V., Braun, R. & Roditi, I. (1993). Eimeria tenella: Characterization of a 5S ribosomal RNA repeat unit and its use as a species-specific probe. Experimental Parasitology 76, 6875.CrossRefGoogle ScholarPubMed
Sueyoshi, S., Tsuji, T. & Osawa, T. (1988). Carbohydrate-binding specificities of five lectins that bind to O-glycosyl-linked carbohydrate chains. Quantitative analysis by frontal-affinity chromatography. Carbohydrate Research 178, 213–24.CrossRefGoogle ScholarPubMed
Waite, J. H. & Rice-Ficht, A. C. (1987). Presclerotized eggshell protein from the liver fluke Fasciola hepatica. Biochemistry 26, 7819–25.CrossRefGoogle ScholarPubMed
Wallach, M., Mencher, D., Yarus, S., Pillemer, G., Halabi, A. & Pugatsch, T. (1989). Eimeria maxima: identification of gametocyte protein antigens and their possible role in protective immunity. Experimental Parasitology 68, 4956.Google Scholar
Wang, C. C. (1982). Biochemistry and physiology of the coccidia. In The Biology of the Coccidia (ed. Long, P. L. ), pp. 167228. London: University Park Press.Google Scholar