Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T00:35:53.119Z Has data issue: false hasContentIssue false

Changes in the organization of the surface membrane upon transformation of cercariae to schistosomula of the helminth parasite Schistosoma mansoni

Published online by Cambridge University Press:  06 April 2009

M. Foley
Affiliation:
Department of Biochemistry, University of Dundee, Dundee DD1 4HN, Scotland
J. R. Kusel
Affiliation:
Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
P. B. Garland
Affiliation:
Department of Biochemistry, University of Dundee, Dundee DD1 4HN, Scotland

Summary

Merocyanin 540 (Mc540) is a fluorescent compound which is thought to bind to membranes in which there are substantial amounts of lipid in the lipid-crystalline phase. It is shown here to be of value in detecting the transformation by both mechanical and skin-penetration methods of the cercaria to the schistosomulum. The cercaria does not appear to bind Mc540, but the schistosomulum, binds Mc540 initially, in its anterior region, and at later times over the entire surface. The suggestion that transformation involves changes in the surface membrane lipid phase from gel to liquid-crystalline phase is supported by fluorescence recovery after photobleaching results with 5-N-(octadecanoyl)-amino fluorescein, a lipophilic dye which appears to be immobile in the cercaria, but fully mobile in the 40 min schistosomulum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. (1976). Mobility measurement by analysis of fluorescence photobleaching recovery kinetic. Biophysical Journal 16, 1055–69.CrossRefGoogle Scholar
Blatt, E. & Sawyer, W. H. (1984). Depth-dependent quenching in micelles and membranes. Biochimica Biophysica Acta 822, 4362.CrossRefGoogle Scholar
Cherry, R. J. (1979). Rational and lateral diffusion of membrane proteins. Biochimica Biophysica Acta 559, 289327.CrossRefGoogle Scholar
Clegg, J. A. & Smithers, S. R. (1972). The effect of immune rhesus monkey serum on schistosomula of Schistosoma mansoni during collection in vitro. International Journal for Parasitology 2, 7998.CrossRefGoogle Scholar
Colley, D. G. & Wikel, S. K. (1974). Schistosoma mansoni. Simplified method for the production of schistosomes. Experimental Parasitology 35, 4451.CrossRefGoogle Scholar
Epel, D. (1978). Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes. Current Topics in Development Biology 12, 185246.CrossRefGoogle ScholarPubMed
Foley, M., MacGregor, A. N., Kusel, J. R., Garland, P. B., Downie, T. & Moore, I. (1986). The lateral diffusion of lipid probes in the surface membrane of Schistosoma mansoni. Journal of Cell Biology 103, 807–18.CrossRefGoogle ScholarPubMed
Freidus, D. J., Schlegel, R. A. & Williamson, P. (1984). Alteration of lipid organization following fertilization of sea urchin eggs. Biochimica Biophysica Acta 803, 191–6.CrossRefGoogle ScholarPubMed
Garland, P. B. (1981). Fluorescence photobleaching recovery: control of laser intensities with an acousto-optic modulator. Biophysical Journal 33, 481–2.CrossRefGoogle ScholarPubMed
Golding, O. L., Clegg, J. A., Smithers, S. R. & Terry, R. J. (1976). Acquisition of human blood group antigens by Schislosotna mansoni. Clinical and Experimental Immunology 26, 181–7.Google Scholar
Hockley, D. J. & McLaren, D. J. (1973). Schistosoma mansoni: changes in the outer membrane & the tegument during development from ccrcariae to adult worm. International Journal for Parasitology 3, 1325.CrossRefGoogle Scholar
Johnson, P. J. & Garland, P. B. (1982). Fluorescent probes for measuring the rotational diffusion membrane proteins. The Biochemical Journal 203, 313–21.CrossRefGoogle ScholarPubMed
Karnovsky, M. J., Kleinfeld, A. M., Hoover, R. L. & Klausner, R. D. (1982). The concept of lipid domains in membranes. Journal of Cell biology 94, 16.CrossRefGoogle ScholarPubMed
Koppel, D. E., Axelrod, D., Schlessinger, J., Elson, E. L. & Webb, W. W. (1970). Dynamics of fluorescence marker concentration as a probe of mobility. Biophysical Journal 16, 1315–29.CrossRefGoogle Scholar
Marikovsky, M., Levi-Schaffer, F., Arnon, R. & Fishelson, Z. (1986). Schistosoma mansoni: killing of transformed schistosomula by the alternative pathway of human complement. Experimental Parasitology 61, 8694.CrossRefGoogle ScholarPubMed
McLaren, D. J. (1980). Schistosoma mansoni: the Surface in Relation to Host Immunity. Chichester: Research Studies Press, John Wiley and Sons Ltd.Google Scholar
Moser, G. D. L., Wassom, D. & Sher, A. (1980). Studies of the antibody-dependent killing of schistosomula of Schistosoma mansoni employing haptenic target antigens. Journal of Experimental Medicine 152, 4153.CrossRefGoogle ScholarPubMed
Ramalho-Pinto, F. J., McLaren, D. J. & Smithers, S. R. (1978). Complement-mediated killing of schistosomula of Schistosoma mansoni by rat eosinophils in vitro. Journal of Experiment Medicine 147, 147156.CrossRefGoogle ScholarPubMed
Rumjanek, F. D. & McLaren, D. (1981). Schistosoma mansoni: modulation of schistosomular lipid composition by serum. Molecular and Biochemical Parasitology 3, 239–52.CrossRefGoogle ScholarPubMed
Rees, A. R., Gregoriou, M., Johnson, P. J. & Garland, P. B. (1984). High affinity epidermal growth factor receptors on the surface of A431 cells have restricted lateral diffusion. EMBO Journal 3, 1843–7.CrossRefGoogle ScholarPubMed
Sahyoun, N., Shatila, T., Levine, H. III & Cuatrecasas, P. (1981). Cytoskeletal association of the cholera toxin receptor in rat erythrocytes. Biochemical and Biophysical Research Communications 102, 1215–22.CrossRefGoogle ScholarPubMed
Samuelson, J. C. & Caulfield, J. P. (1985). The cercarial glycocalyx of Schistosoma mansoni. Journal of Cell Biology 100, 1423–34.CrossRefGoogle ScholarPubMed
Schlegel, R. A., Phelps, B. M., Waggoner, A., Terada, L. & Williamson, P. (1980). Binding of Merocyanin 540 to normal and leukemic erthroid cells. Cell 20, 321–8.CrossRefGoogle Scholar
Sherman, I. W. & Greenan, J. R. T. (1984). Altered red cell membrane fluidity during schizogonic development of malarial parasites (Plasmodium falciparum and P. lophurae). Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 641–4.CrossRefGoogle ScholarPubMed
Smithers, S. R., Terry, R. J. & Hockley, D. J. (1969). Host antigen in schistosomiasis. Proceedings of the Royal Society of London, B 171, 483–94.Google ScholarPubMed
Stryer, L. (1978). Fluorescence energy transfer as a spectroscopic ruler. Annual Review of Biochemistry 47, 819–46.CrossRefGoogle ScholarPubMed
Utsumi, K., Okimasu, E., Morimoto, Y. M., Hishihara, Y. & Miyahara, M. (1982). Selective interaction of cytoskeletal proteins with liposomes. FEBS Letters 141, 176–80.CrossRefGoogle ScholarPubMed
Williamson, P., Mattocks, K. & Schlegel, R. A. (1983). Merocyanin 540 a fluorescent probe sensitive to lipid packing. Biochimica Biophysica Acta 732, 387–93.CrossRefGoogle ScholarPubMed
Williamson, P., Bateman, J., Kozarsky, K., Hermanowicz, N., Choe, H. R. & Schlegel, R. A. (1982). Involvement of spectrin in the maintenance of phase-state asymmetry in the erythrocyte membrane. Cell 30, 725–33.CrossRefGoogle ScholarPubMed
Vogel, H. & Minning, W. (1949). Weitere Beobachtungen über die Cercariehüllen-reaktion eine Seropräzipitation mit lebenden Bilharzia-cercarien. Zeitschrift für Tropenmedizin und Parasitologie 1, 378–86.Google Scholar