Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T16:51:17.748Z Has data issue: false hasContentIssue false

Changes in protein expression in the sheep abomasum following trickle infection with Teladorsagia circumcincta

Published online by Cambridge University Press:  11 November 2011

ALAN D. PEMBERTON*
Affiliation:
The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9RG, UK
JEREMY K. BROWN
Affiliation:
The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9RG, UK
NICKY M. CRAIG
Affiliation:
The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9RG, UK
JUDITH PATE
Affiliation:
The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9RG, UK
KEVIN McLEAN
Affiliation:
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
NEIL F. INGLIS
Affiliation:
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
DAVID KNOX
Affiliation:
Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
PAMELA A. KNIGHT
Affiliation:
The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9RG, UK
*
*Corresponding author: The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9RG, UK. E-mail: [email protected]

Summary

Continual low-level exposure of sheep to the helminth Teladorsagia circumcincta elicits a temporary protective immunity, where factors in the immune abomasal mucosa prevent penetration of infective larvae, but which is essentially lost within 6 weeks of cessation of parasite challenge. Here, a proteomic approach was used to identify proteins that are differentially regulated in immune compared to naïve sheep, as potential key mediators of immunity. Six naïve sheep and 12 sheep trickle-infected with T. circumcincta were treated with anthelmintic, and the naïve (control) and 6 immune sheep were killed 7 days later. The remaining 6 sheep (immune waning) were killed 42 days after anthelmintic treatment. Abomasal tissue samples were subjected to 2D-gel electrophoresis and densitometric analysis. Selected spots (n=73) were identified by peptide mass fingerprinting and confirmatory Western blotting was carried out for 10 proteins. Spots selectively up-regulated in immune versus control, but not immune waning versus control sheep, included galectin-15 and thioredoxin, which were confirmed by Western blotting. In immune sheep, serum albumin was significantly down-regulated and albumin proteolytic cleavage fragments were increased compared to controls. Unexpectedly, albumin mRNA was relatively highly expressed in control mucosa, down-regulated in immune, and was immunolocalized to mucus-producing epithelial cells. Thus we have identified differential expression of a number of proteins following T. circumcincta trickle infection that may play a role in host protection and inhibition of parasite establishment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahn, S. M., Byun, K., Cho, K., Kim, J. Y., Yoo, J. S., Kim, D., Paek, S. H., Kim, S. U., Simpson, R. J. and Lee, B. (2008). Human microglial cells synthesize albumin in brain. PLoS ONE 3, e2829.CrossRefGoogle ScholarPubMed
Athanasiadou, S., Pemberton, A., Jackson, F., Inglis, N., Miller, H. R., Thevenod, F., Mackellar, A. and Huntley, J. F. (2008). Proteomic approach to identify candidate effector molecules during the in vitro immune exclusion of infective Teladorsagia circumcincta in the abomasum of sheep. Veterinary Research 39, 58.Google Scholar
Bourdon, E. and Blanche, D. (2001). The importance of proteins in defence against oxidation. Antioxidants and Redox Signalling 3, 293311.Google Scholar
Brown, W. M., Dziegielewska, K. M., Foreman, R. C. and Saunders, N. R. (1989). Nucleotide and deduced amino acid sequence of sheep serum albumin. Nucleic Acids Research 17, 10495.CrossRefGoogle ScholarPubMed
Caraux, G. and Pinloche, S. (2005). PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21, 12801281.Google Scholar
Chignard, N., Shang, S., Wang, H., Marrero, J., Brechot, C., Hanash, S. and Beretta, L. (2006). Cleavage of endoplasmic reticulum proteins in hepatocellular carcinoma: Detection of generated fragments in patient sera. Gastroenterology 130, 20102022.CrossRefGoogle ScholarPubMed
Conde-Vancells, J., Rodriguez-Suarez, E., Embade, N., Gil, D., Matthiesen, R., Valle, M., Elortza, F., Lu, S. C., Mato, J. M. and Falcon-Perez, J. M. (2008). Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. Journal of Proteome Research 7, 51575166.CrossRefGoogle ScholarPubMed
Craig, N. M., Miller, H. R., Smith, W. D. and Knight, P. A. (2007). Cytokine expression in naive and previously infected lambs after challenge with Teladorsagia circumcincta. Veterinary Immunology and Immunopathology 120, 4754.CrossRefGoogle ScholarPubMed
Dunphy, J. L., Balic, A., Barcham, G. J., Horvath, A. J., Nash, A. D. and Meeusen, E. N. (2000). Isolation and characterization of a novel inducible mammalian galectin. Journal of Biological Chemistry 275, 3210632113.CrossRefGoogle ScholarPubMed
French, A. T., Knight, P. A., Smith, W. D., Brown, J. K., Craig, N. M., Pate, J. A., Miller, H. R. and Pemberton, A. D. (2008). Up-regulation of intelectin in sheep after infection with Teladorsagia circumcincta. International Journal for Parasitology 38, 467475.CrossRefGoogle ScholarPubMed
French, A. T., Knight, P. A., Smith, W. D., Pate, J. A., Miller, H. R. and Pemberton, A. D. (2009). Expression of three intelectins in sheep and response to a Th2 environment. Veterinary Research 40, 53.CrossRefGoogle ScholarPubMed
Gilleard, J. S. (2006). Understanding anthelmintic resistance: the need for genomics and genetics. International Journal for Parasitology 36, 12271239.CrossRefGoogle ScholarPubMed
Halliday, A. M., Morrison, W. I. and Smith, W. D. (2009). Kinetics of the local cellular response in the gastric lymph of immune and susceptible sheep to infection with Teladorsagia circumcincta. Parasite Immunology 31, 402411.CrossRefGoogle ScholarPubMed
Halliday, A. M., Routledge, C. M., Smith, S. K., Matthews, J. B. and Smith, W. D. (2007). Parasite loss and inhibited development of Teladorsagia circumcincta in relation to the kinetics of the local IgA response in sheep. Parasite Immunology 29, 425434.Google Scholar
Huntley, J. F., Gibson, S., Brown, D., Smith, W. D., Jackson, F. and Miller, H. R. (1987). Systemic release of a mast cell proteinase following nematode infections in sheep. Parasite Immunology 9, 603614.CrossRefGoogle ScholarPubMed
Jackson, F., Greer, A. W., Huntley, J., McAnulty, R. W., Bartley, D. J., Stanley, A., Stenhouse, L., Stankiewicz, M. and Sykes, A. R. (2004). Studies using Teladorsagia circumcincta in an in vitro direct challenge method using abomasal tissue explants. Veterinary Parasitology 124, 7389.CrossRefGoogle Scholar
Knight, P. A., Griffith, S. E., Pemberton, A. D., Pate, J. M., Guarneri, L., Anderson, K., Talbot, R. T., Smith, S., Waddington, D., Fell, M., Archibald, A. L., Burgess, S. T., Smith, W. D., Miller, H. R. and Morrison, W. I. (2011). Novel gene expression responses in the ovine abomasal mucosa to infection with the gastric nematode Teladorsagia circumcincta. Veterinary Research 42, 78.CrossRefGoogle ScholarPubMed
Knight, P. A., Pate, J., Smith, W. D. and Miller, H. R. (2007). An ovine chitinase-like molecule, chitinase-3 like-1 (YKL-40), is upregulated in the abomasum in response to challenge with the gastrointestinal nematode, Teladorsagia circumcincta. Veterinary Immunology and Immunopathology 120, 5560.CrossRefGoogle ScholarPubMed
List, S. J., Findlay, B. P., Forstner, G. G. and Forstner, J. F. (1978). Enhancement of the viscosity of mucin by serum albumin. The Biochemical Journal 175, 565571.CrossRefGoogle ScholarPubMed
Meeusen, E. N., Balic, A. and Bowles, V. (2005). Cells, cytokines and other molecules associated with rejection of gastrointestinal nematode parasites. Veterinary Immunology and Immunopathology 108, 121125.CrossRefGoogle ScholarPubMed
Menzies, M., Reverter, A., Andronicos, N., Hunt, P., Windon, R. and Ingham, A. (2010). Nematode challenge induces differential expression of oxidant, antioxidant and mucous genes down the longitudinal axis of the sheep gut. Parasite Immunology 32, 3646.CrossRefGoogle ScholarPubMed
Meunier, B., Dumas, E., Piec, I., Bechet, D., Hebraud, M. and Hocquette, J. F. (2007). Assessment of hierarchical clustering methodologies for proteomic data mining. Journal of Proteome Research 6, 358366.CrossRefGoogle ScholarPubMed
Nieuwhof, G. J. and Bishop, S. C. (2005). Costs of the major endemic diseases of sheep in Great Britain and the potential benefits of reduction in disease impact. Animal Science 81, 2329.CrossRefGoogle Scholar
Pemberton, A. D., Huntley, J. F. and Miller, H. R. (1997). Sheep mast cell proteinase-1: characterization as a member of a new class of dual-specific ruminant chymases. The Biochemical Journal 321, 665670.CrossRefGoogle ScholarPubMed
Pemberton, A. D., Verdon, B., Inglis, N. F. and Pearson, J. P. (2011). Sheep intelectin-2 co-purifies with the mucin Muc5ac from gastric mucus. Research in Veterinary Science, doi:10.1016/j.rvsc.2011.03.004.Google Scholar
Perkins, D. N., Pappin, D. J., Creasy, D. M. and Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 35513567.Google Scholar
Raymond, W. W., Ruggles, S. W., Craik, C. S. and Caughey, G. H. (2003). Albumin is a substrate of human chymase. Prediction by combinatorial peptide screening and development of a selective inhibitor based on the albumin cleavage site. Journal of Biological Chemistry 278, 3451734524.CrossRefGoogle ScholarPubMed
Shamay, A., Homans, R., Fuerman, Y., Levin, I., Barash, H., Silanikove, N. and Mabjeesh, S. J. (2005). Expression of albumin in nonhepatic tissues and its synthesis by the bovine mammary gland. Journal of Dairy Science 88, 569576.CrossRefGoogle ScholarPubMed
Smith, W. D., Jackson, F., Jackson, E. and Williams, J. (1983). Local immunity and Ostertagia circumcincta: changes in the gastric lymph of immune sheep after a challenge infection. Journal of Comparative Pathology 93, 479488.CrossRefGoogle ScholarPubMed
Stamler, J. S., Jaraki, O., Osborne, J., Simon, D. I., Keaney, J., Vita, J., Singel, D., Valeri, C. R. and Loscalzo, J. (1992). Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proceedings of the National Academy of Sciences, USA 89, 76747677.CrossRefGoogle ScholarPubMed
Stevenson, L. M., Huntley, J. F., Smith, W. D. and Jones, D. G. (1994). Local eosinophil- and mast cell-related responses in abomasal nematode infections of lambs. FEMS Immunology and Medical Microbiology 8, 167173.CrossRefGoogle ScholarPubMed
Stewart, A. J., Blindauer, C. A., Berezenko, S., Sleep, D., Tooth, D., Sadler, P. J. (2005). Role of Tyr84 in controlling the reactivity of Cys34 of human albumin. FEBS Journal 272, 353362.Google Scholar
File 363.1 KB
Supplementary material: File

Pemberton Supplementary Table 1

Supplementary Table 1: Sheep abomasal proteins identified by peptide mass fingerprinting

Download Pemberton Supplementary Table 1(File)
File 230.9 KB