Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T18:26:34.313Z Has data issue: false hasContentIssue false

Carbon dioxide fixation in trypanosomatids

Published online by Cambridge University Press:  06 April 2009

R. A. Klein
Affiliation:
Medical Research Council, Biochemical Parasitology Unit, Molteno Institute, University of Cambridge, Downing Street, Cambridge CB2 3EE
D. J. Linstead
Affiliation:
Medical Research Council, Biochemical Parasitology Unit, Molteno Institute, University of Cambridge, Downing Street, Cambridge CB2 3EE
M. V. Wheeler
Affiliation:
Medical Research Council, Biochemical Parasitology Unit, Molteno Institute, University of Cambridge, Downing Street, Cambridge CB2 3EE

Extract

Fixation of carbon dioxide has been demonstrated for extracts from Crithidia fasciculata, Trypanosoma mega and Trypanosoma brucei brucei bloodstream and culture forms. The enzymes involved in this fixation were found to be ADP-stimulated phosphoenolpyruvate carboxykinase (E.C. 4. 1. 1. 32), ‘malic’ enzyme (E.C. 1. 1. 138–40) and pyruvate carboxylase (E. 0. 6. 4. 1. 1). The subcellular localization of these enzymes has been investigated in all three organisms. Products of short and long term fixation experiments were separated and identified.

The importance of carboxylation reactions is discussed in relation to the maintenance of oxidized and reduced coenzyme levels.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacchi, C. J., Ciaccio, E. I., Kaback, D. B. & Hutner, S. H. (1970). Oxaloacetate production via carboxylation in Crithidia fasciculata preparations. Journal of Protozoology 17, 305–11.CrossRefGoogle ScholarPubMed
Bowman, I. B. R., Srivastava, H. K. & Flynn, I. W. (1972). Adaptations in oxidative metabolism during the transformation of Trypanosoma rhodesiense from bloodstream into culture form. In Comparative Biochemistry of Parasites (ed. Van den Bossche, ), pp. 329–42. New York, London: Academic Press.CrossRefGoogle Scholar
Bowman, I. B. R., Tobie, E. J. & von Brand, T. (1963). CO2 fixation studies with the culture form of Trypanosoma cruzi. Comparative Biochemistry and Physiology 9, 105–14.CrossRefGoogle Scholar
Bryant, C. (1972). The utilization of carbon dioxide by Moniezia expansa: aspects of metabolic regulation. In Comparative Biochemistry of Parasites (ed. Van den Bossche, H.), pp. 4979. New York, London: Academic Press.CrossRefGoogle Scholar
Chatterjee, T. & Datta, A. C. (1973). Anaerobic formation of succinate from glucose and bicarbonate in resting cells of Leishmania donovani. Experimental Parasitology 33, 138–46.CrossRefGoogle ScholarPubMed
Cross, G. A. M. & Manning, J. C. (1973). Cultivation of Trypanosoma brucei sspp. in semidefined media. Parasitology 67, 315–31.CrossRefGoogle Scholar
Grant, P. T., Sargent, J. R. & Ryley, J. F. (1961). Respiratory systems in the Trypano somidae. Biochemical Journal 81, 200–6.CrossRefGoogle Scholar
Hunter, F. R. (1960). Aerobic metabolism of Crithidia fasciculata. Experimental Parasitology 9, 271–80.CrossRefGoogle ScholarPubMed
La Noue, K., Nicklas, W. J. & Williamson, J. R. (1970). Control of citric acid cycle activity in rat heart mitochondria. Journal of Biological Chemistry 245, 102–11.CrossRefGoogle ScholarPubMed
Lane, M. D., Chang, H. C. & Miller, R. S. (1969). Phosphoenolpyruvate carboxykinase from pig liver mitochondria. Methods in Enzymology 13, 270–7.CrossRefGoogle Scholar
Lanham, S. M. (1968). Separation of trypanosomes from the blood of infected rats and mice by anion-exchangers. Nature, London 218, 1273–4.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle Scholar
Marr, J. J. (1973). Crithidia fasciculata: regulation of aerobic fermentation by malic enzyme. Experimental Parasitology 33, 447–57.CrossRefGoogle ScholarPubMed
Owen, T. G. & Hochachka, P. W. (1974). Purification and properties of dolphin muscle aspartate and alanine transaminases and their possible roles in energy metabolism of diving mammals. Biochemical Journal 143, 541–53.CrossRefGoogle ScholarPubMed
Penney, D. G. & Cascarano, J. (1970). Anaerobic rat heart; effects of glucose and tricarboxylic acid-cycle metabolites on metabolism and physiological performance. Biochemical Journal 118, 221–7.CrossRefGoogle ScholarPubMed
Raw, I. (1959). Some aspects of carbohydrate metabolism of cultural forms of Trypanosoma cruzi. Revista do Instituto de Medicina Tropical de São Paulo, 1, 192–4.Google Scholar
Ryley, J. F. (1956). Studies on the metabolism of the protozoa. 7. Comparative carbohydrate metabolism of eleven species of trypanosome. Biochemical Journal 62, 215–22.CrossRefGoogle Scholar
Ryley, J. F. (1962). Studies on the metabolism of the protozoa. 9. Comparative metabolism of bloodstream and culture forms of Trypanosoma rhodesiense. Biochemical Journal 85, 211–23.CrossRefGoogle Scholar
Saz, H. J. (1972). Comparative biochemistry of carbohydrates in nematodes and cestodes. In Comparative Biochemistry of Parasites (ed. Van den Bossche, H.), pp. 3347. New York, London: Academic Press.CrossRefGoogle Scholar
Saz, H. J. & Lescure, O. L. (1969). The functions of phosphoenolpyruvate carboxykinase and malic enzyme in the anaerobic formation of succinate by Ascaris lumbricoides. Comparative Biochemistry and Physiology 30, 4960.CrossRefGoogle ScholarPubMed
Scheibel, L. W. & Saz, H. J. (1966). The pathway for anaerobic carbohydrate dissimilation in Hymenolepis diminuta. Comparative Biochemistry and Physiology 18, 151–62.CrossRefGoogle ScholarPubMed
Steinert, M. & Boné, G. J. (1956). Induced change from culture form to bloodstream form in Trypanosoma mega. Nature, London 178, 362.CrossRefGoogle Scholar
Vickerman, K. (1971). Morphological and physiological consideration of extracellular prot`ozoa. In Ecology and Physiology of Parasites (ed. Fallis, ), pp. 5891. Toronto: University of Toronto Press.CrossRefGoogle Scholar