Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T09:32:53.693Z Has data issue: false hasContentIssue false

Breakdown of the blood-brain barrier in murine cerebral malaria

Published online by Cambridge University Press:  06 April 2009

C. M. Thumwood
Affiliation:
Department of Experimental Pathology, John Curtin School of Medical Research
N. H. Hunt
Affiliation:
Department of Experimental Pathology, John Curtin School of Medical Research
I. A. Clark
Affiliation:
Department of Zoology, The Faculties, Australian National University, P.O. Box 334, Canberra, ACT 2601, Australia
W. B. Cowden
Affiliation:
Department of Experimental Pathology, John Curtin School of Medical Research

Summary

Cerebral malaria in A/J and CBA/H mice infected with Plasmodium berghei ANKA is accompanied by mononuclear cell infiltration, haemorrhage and cerebral endothelial cell damage. This damage is presumably one of the causes of the breakdown of the blood—brain barrier which was detected by measuring the movement of the dye Evans blue and radioisotope labelled albumin and erythrocytes. The density of brain tissue, measured by a Percoll gradient technique, was significantly reduced in mice exhibiting cerebral symptoms, suggesting the occurrence of cerebral oedema.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Carp, R. I., Davidson, A. I., & Merz, P. A., (1971). A method for obtaining cerebrospinal fluid from mice. Research in Veterinary Science 12, 499.CrossRefGoogle ScholarPubMed
Clark, I. A., & Hunt, N. H., (1983). Evidence for free oxygen intermediates causing hemolysis and parasite death in malaria. Infection and Immunity 39, 16.CrossRefGoogle ScholarPubMed
Clark, I. A., Hunt, N. H., & Cowden, W. B., (1986). Oxygen-derived free radicals in the pathogenesi of parasitic disease. Advances in Parasitology 25, 144.CrossRefGoogle Scholar
Clark, I. A., Virelizier, J.-L., Carswell, E. A., & Wood, P. R., (1981). Possible importance of macrophage-derived mediators in acute malaria. Infection and Immunity 32, 1058–66.CrossRefGoogle ScholarPubMed
Daroff, E. B., Deller, J. J., Kastl, A. J., & Blockbr, W. W., (1967). Cerebral malaria. Journal of the American Medical Association 202, 679–82.CrossRefGoogle ScholarPubMed
Eisenberg, H. M., Barlow, C. F., & Lorenzo, A. V., (1970). Effect of dexamethasone on altered brain vascular permeability. Archives Neurology 23, 1822.CrossRefGoogle ScholarPubMed
Finley, R. W., Mackey, L. J., & Lambert, P.-H., (1982). Virulent P. berghei malaria: prolonged survival and decreased cerebral pathology in cell-deficient nude mice. Journal of Immunology 129, 2213–18.CrossRefGoogle Scholar
Grau, G. E., Fajardo, L. F., Piguet, P.-F., Allet, B., Lambert, P.-H., & Vassalli, P., (1987). Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science 237, 1210–12.CrossRefGoogle ScholarPubMed
Grau, G. E., Piquet, P.-F., Engers, H. D., Louis, J. A., Vassalli, P., & Lambert, P.-H., (1986). L3T4+ lymphocytes play a major role in the pathogenesis of murine cerebral malaria. Journal of Immunology 137, 2348–54.CrossRefGoogle Scholar
Hedley-Whyte, E. T., & Hsu, D. W., (1986). Effect of dexamethasone on blood—brain barrier in the normal mouse. Annals of Neurology 19, 373–7.CrossRefGoogle ScholarPubMed
Janota, I., & Doshi, B., (1979). Cerebral malaria in the United Kingdom. Journal of Clinical Pathology 32, 769–72.CrossRefGoogle ScholarPubMed
Leech, J. H., Barnwell, J. W., Aikawa, M., Miller, L. H., & Howard, R. J., (1984). Plasmodium falciparum malaria: association of knobs on the surface of infected erythrocytes with a histidinerich protein and the erythrocyte skeleton. Journal of Cell Biology 98, 1256–64.CrossRefGoogle ScholarPubMed
Looareesuwan, S., Warrell, D. A., White, N. J., Sutharasami, P., Chanthavanich, P., Sundaravej, K., Jeul-Jenson, B. E., Bunnag, D., & Harinasuta, T., (1983). Do patients with cerebral malaria have cerebral oedema? A computed tomography study. Lancet i, 434–7.CrossRefGoogle Scholar
Mackey, L. J., Hochmann, A., June, C. H., Contreras, C. E., & Lambert, P.-H,. (1980). Immunopathological aspects of Plasmodium berghei infection in five strains of mice: II. Immunopathology of cerebral and other lesions during the infection. Clinical and Experimental Immunology 42, 412–20.Google ScholarPubMed
MacPherson, G. G., Warrell, M. J., White, N. J., Looareesuwan, S., & Warrell, D., (1985). Human cerebral malaria: a quantitative ultrastructural analysis of parasitized erythrocyte sequestration. American Journal of Pathology 119, 385401.Google ScholarPubMed
Maegraith, B., & Fletcher, A., (1972). The pathogenesis of mammalian malaria. Advances in Parasitology 10, 4975.CrossRefGoogle ScholarPubMed
McConahey, P. J., & Dixon, F. J., (1966). A method of trace iodination of proteins for immunologic studies. International Archives of Allergy and Applied Immunology 29, 185–9.CrossRefGoogle ScholarPubMed
Osuntokun, B. O., (1983). Malaria and the nervous system. African Journal of Medical Science 12, 165–72.Google ScholarPubMed
Phillips, R. E., & Warrell, D. A., (1986). The pathophysiology of severe falciparum malaria. Parasitology Today 2, 271–82.CrossRefGoogle ScholarPubMed
Rest, J. R., (1982). Cerebral malaria in inbred mice: I. A new model and its pathology. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 410–15.CrossRefGoogle Scholar
Rest, J. R., & Wright, D. H., (1979). Electron microscopy of cerebral malaria in golden hamsters (Mesocricetus auratus) infected with Plasmodium berghei. Journal of Pathology 127, 115–20.CrossRefGoogle ScholarPubMed
Tengvar, C., Forssen, M., Hultstrom, D., Olsson, Y., Pertoft, H., & Petterson, A., (1982). Measurement of edema in the nervous system. Ada Neuropathologica (Berlin) 57, 143–50.CrossRefGoogle ScholarPubMed
Thomas, J. D., (1971). Clinical and histopathological correlation of cerebral malaria. Tropical and Geographical Medicine 23, 232–8.Google ScholarPubMed
Toro, G., & Roman, G., (1978). Cerebral malaria: disseminated vasculomyelinopathy. Archives of Neurology 35, 271–5.CrossRefGoogle ScholarPubMed
Udeinya, I. J., Schmidt, J. A., Aikawa, M., Miller, L. H., & Green, I., (1981). Falciparum malariainfected erythrocytes specifically bind to cultured human endothelial cells. Science 213, 555–7.CrossRefGoogle ScholarPubMed
Warrell, D. A., Looareesuwan, S., Phillips, R. E., White, N. J., Warrell, M. J., Chapel, H. M., Areekul, S., & Tharavanij, S., (1986). Function of the blood-cerebrospinal fluid barrier in human cerebral malaria: rejection of the permeability hypothesis. American Journal of Tropical Medicine and Hygiene 35, 882–9.CrossRefGoogle ScholarPubMed
Warrell, D. A., Looareesuwan, S., Warrell, M. J., Kesemsarn, P., Intaraprasert, R., Bunnag, D., & Harinasuta, T., (1982). Dexamethasone proves deleterious in cerebral malaria: a double-blind trial in 100 comatose patients. The New England Journal of Medicine 306, 313–19.CrossRefGoogle ScholarPubMed
White, X. J., Warrell, D. A., Looareesuwan, S., Chanthavanich, P., Phillips, R. E., & Pongpaew, P., (1985). Pathophysiological and prognostic significance of cerebrospinal-fluid lactate in cerebral malaria. Lancet i, 776–8.CrossRefGoogle Scholar
Wright, D. H., (1968). The effect of neonatal thymectomy on the survival of golden hamsters infected with Plasmodium berghei. British Journal of Experimental Pathology 49, 379–84.Google ScholarPubMed
Wright, D. H., Masembe, R. M., & Bazira, E. R., (1971). The effect of antithymocyte serum on golden hamsters and rats infected with Plasmodium berghei. British Journal of Experimental Medicine 52, 465–77.Google ScholarPubMed
Yoeli, M., & Hargreaves, B. J., (1974). Brain capillary blockage produced by a virulent strain of rodent malaria. Science 184, 572–3.CrossRefGoogle ScholarPubMed