Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T16:56:58.109Z Has data issue: false hasContentIssue false

BnSP-7 toxin, a basic phospholipase A2 from Bothrops pauloensis snake venom, interferes with proliferation, ultrastructure and infectivity of Leishmania (Leishmania) amazonensis

Published online by Cambridge University Press:  27 February 2013

DÉBORA C. O. NUNES
Affiliation:
Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
MÁRCIA M. N. R. FIGUEIRA
Affiliation:
Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
DAIANA S. LOPES
Affiliation:
Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
DAYANE L. NAVES DE SOUZA
Affiliation:
Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
LUIZ FERNANDO M. IZIDORO
Affiliation:
Faculdade de Ciências Integradas do Pontal, Universidade Federal de Uberlândia, MG, Brazil
ELOÍSA A. V. FERRO
Affiliation:
Departamento de Morfologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brazil
MARIA A. SOUZA
Affiliation:
Departamento de Patologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brazil
RENATA S. RODRIGUES
Affiliation:
Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901, Belo Horizonte, MG, Brazil
VERIDIANA M. RODRIGUES
Affiliation:
Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901, Belo Horizonte, MG, Brazil
KELLY A. G. YONEYAMA*
Affiliation:
Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
*
*Corresponding author: Pará avenue, 1720 CEP: 38400-902 Uberlândia, MG, Brazil. Tel: +3432182203. Fax: +55 34 3218 2203#22. E-mail: [email protected]

Summary

This paper reports the effects of BnSP-7 toxin, a catalytically inactive phospholipase A2 from Bothrops pauloensis snake venom, on Leishmania (Leishmania) amazonensis. BnSP-7 presented activity against promastigote parasite forms both in the MTT assay, with IC50 of 58·7 μg mL−1 of toxin, and a growth curve, inhibiting parasite proliferation 60–70% at concentrations of 50–200 μg mL−1 of toxin 96 h after treatment. Also, the toxin presented effects on amastigotes, reducing parasite viability by 50% at 28·1 μg mL−1 and delaying the amastigote–promastigote differentiation process. Ultrastructural studies showed that BnSP-7 caused severe morphological changes in promastigotes such as mitochondrial swelling, nuclear alteration, vacuolization, acidocalcisomes, multiflagellar aspects and a blebbing effect in the plasma membrane. Finally, BnSP-7 interfered with the infective capacity of promastigotes in murine peritoneal macrophages, causing statistically significant infectivity-index reductions (P < 0·05) of 20–35%. These data suggest that the BnSP-7 toxin is an important tool for the discovery of new parasite targets that can be exploited to develop new drugs for treating leishmaniasis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnoult, D., Akarid, K., Grodet, A., Petit, P. X., Estaquier, J. and Ameisen, J. C. (2002). On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization. Nature Cell Death and Differentiation 9, 6581.CrossRefGoogle ScholarPubMed
Barbosa, P. S. F., Martins, A. M. C., Hayt, A., Toyama, O., Evangelista, J. S. M., Ferreira, D. P. P., Joazeiro, P. P., Beriam, L. O. S., Toyama, M. H., Fonteles, M. C. and Monteiro, H. S. A. (2005). Renal and antibacterial effects induced by myotoxin I and II isolated from Bothrops jararacussu venom. Toxicon 46, 376386.CrossRefGoogle ScholarPubMed
Basano, S. A. and Camargo, L. M. A. (2004). Leishmaniose tegumentar americana: histórico, epidemiologia e perspectivas de controle. Revista Brasileira de Epidemiologia 7, 328337.CrossRefGoogle Scholar
BRASIL (2007). Ministério da Saúde. Secretaria de Vigilância em Saúde. Manual de Vigilância da Leishmaniose Tegumentar Americana. 2nd Edn. atual. Editora do Ministério da Saúde, Brasília.Google Scholar
Costa, T. R., Menaldo, D. L., Oliveira, C. Z., Santos-Filho, N. A., Teixeira, S. S., Nomizo, A., Fuly, A. L., Monteiro, M. C., de Souza, B. M., Palma, M. S., Stábeli, R. G., Sampaio, S. V. and Soares, A. M. (2008). Myotoxic phospholipases A2 isolated from Bothrops brazili snake venom and synthetic peptides derived from their C-terminal region: cytotoxic effect on microorganism and tumor cells. Peptides 29, 16451656.CrossRefGoogle ScholarPubMed
Deolindo, P., Teixeira-Ferreira, A. S., Damatta, R. A. and Alves, E. W. (2010). L-amino acid oxidase activity present in fractions of Bothrops jararaca venom is responsible for the induction of programmed cell death in Trypanosoma cruzi. Toxicon 56, 944955.CrossRefGoogle ScholarPubMed
Diaz, B. L. and Arm, J. P. (2003). Phospholipase A2. Prostaglandins, Leukotrienes and Essential Fatty Acids 69, 8797.CrossRefGoogle Scholar
Docampo, R. and Moreno, S. N. J. (1999). Acidocalcisome: a novel Ca2+ storage compartment in trypanosomatids and apicomplexan parasites. Parasitology Today 15, 443448.CrossRefGoogle ScholarPubMed
Docampo, R. and Moreno, S. N. J. (2001). The acidocalcisome. Molecular and Biochemical Parasitology 33, 151159.CrossRefGoogle Scholar
Fernandez-Gomes, R., Zerrouk, H., Sebti, F., Loyens, M., Benslimane, A. and Ouaissi, M. A. (1994). Growth inhibition of Trypanosoma cruzi and Leishmania donovani infantum by different snake venoms: preliminary identification of proteins from Cerastes cetrastes venom which interact with the parasites. Toxicon 32, 875882.CrossRefGoogle Scholar
García-Almagro, D. (2005). Leishmaniasis cutánea. Actas Dermo-sifiliográficas 96, 124.CrossRefGoogle Scholar
Gonçalves, A. R., Soares, M. J., Souza, W., Damatta, R. A. and Alves, E. W. (2002). Ultra structural alterations and growth inhibition of Trypanosoma cruzi and Leishmania major induced by Bothrops jararaca venom. Parasitology Research 88, 598602.Google Scholar
Gontijo, B. and Carvalho, M. L. R. (2003). Leishmaniose tegumentar Americana. Revista da Sociedade Brasileira de Medicina Tropical 36, 7180.CrossRefGoogle Scholar
Granthon, A. C., Braga, M. V., Rodrigues, J. C. F., Cammerer, S., Lorente, S. O., Gilbert, I. H., Urbina, J. A. and Souza, W. (2007). Alterations on the growth and ultrastructure of Leishmania chagasi induced by squalene synthase inhibitors. Veterinary Parasitology 146, 2534.CrossRefGoogle ScholarPubMed
Grevelink, S. A. and Lerner, E. A. (1996). Leishmaniasis. Journal of the American Academy of Dermatology 34, 257272.CrossRefGoogle ScholarPubMed
Havens, C. G., Bryant, N., Asher, L., Lamoreaux, L., Perfetto, S., Brendle, J. J. and Werbovetz, K. A. (2000). Cellular effects of leishmanial tubulin inhibitors on Leishmania donovani. Molecular and Biochemical Parasitology 110, 223236.CrossRefGoogle Scholar
Jiménez-Ruiz, A., Alzate, J. F., Macleod, E. T., Lüder, C. G. K., Fasel, N. and Hurd, H. (2010). Apoptotic markers in protozoan parasites. Parasites and Vectors 3, 115.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.CrossRefGoogle ScholarPubMed
Ledezma, E., Jorquera, A., Bendezú, H., Vivas, J. and Pérez, G. (2002). Antiproliferative and leishmanicidal effect of ajoene on various Leishmania species: ultrastructural study. Parasitology Research 88, 748753.CrossRefGoogle ScholarPubMed
Menna-Barreto, R. F. S., Salomão, K., Dantas, A. P., Santa-Rita, R. M., Soares, M. J., Barbosa, H. S. and de Castro, S. L. (2009). Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron 40, 157168.CrossRefGoogle ScholarPubMed
Mitropoulos, P., Konidas, P. and Durkin-Konidas, M. (2010). New World cutaneous leishmaniasis: updated review of current and future diagnosis and treatment. Journal of the American Academy of Dermatology 63, 309322.CrossRefGoogle ScholarPubMed
Moreno, S. N. J. and Docampo, R. (2009). The role of acidocalcisomes in parasitic protists. Journal of Eukaryotic Microbiology 56, 208213.CrossRefGoogle ScholarPubMed
Nakamura, T. U., Mendonça-Filho, R. R., Morgado-Díaz, J. A., Maza, P. K., Dias Filho, B. P., Cortez, D. A. G., Alviano, D. S., Rosa, M. S. S., Lopes, A. H. C. S. and Nakamura, C. V. (2006). Antileishmanial activity of Eugenol rich oil from Ocimum gratissimum. Parasitology International 55, 99105.CrossRefGoogle Scholar
Nevalainen, T. J., Graham, G. G. and Scott, K. F. (2008). Antibacterial actions of secreted phospholipases A2. Review. Biochimica et Biophysica Acta 1781, 19.CrossRefGoogle ScholarPubMed
Neto, R. L. M., Sousa, L. M. A., Dias, C. S., Barbosa Filho, J. M., Oliveira, M. R. and Figueiredo, R. C. B. Q. (2011). Morphological and physiological changes in Leishmania promastigotes induced by yangambin, a lignan obtained from Ocotea duckei. Experimental Parasitology 127, 215221.CrossRefGoogle Scholar
Olivier, M., Atayde, V. D., Isnard, A., Hassani, K. and Shio, M. T. (2012). Leishmania virulence factors: focus on the metalloprotease GP63. Microbes and Infection 14, 13771389.CrossRefGoogle ScholarPubMed
Paiva, R. M. A., Figueiredo, R. F., Antonucci, G. A., Paiva, H. H., Bianchi, M. L. P., Rodrigues, K. C., Lucarini, R., Caetano, R. C., Pietro, R. C. L. R., Martins, C. H. G., de Albuquerque, S. and Sampaio, S. V. (2011). Cell cycle arrest evidence, parasiticidal and bactericidal properties induced by L-amino acid oxidase from Bothrops atrox snake venom. Biochimie 93, 941947.CrossRefGoogle Scholar
Páramo, L., Lomonte, B., Pizarro-Cerda, J., Bengoechea, J. A., Gorvel, J. P. and Moreno, E. (1998). Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A2 from Bothrops asper snake venom – synthetic Lys49 myotoxin II-(115–129)-peptide identifies its bactericidal region. European Journal of Biochemistry 253, 452461.CrossRefGoogle ScholarPubMed
Paris, C., Loiseau, P. M., Bories, C. and Bréard, J. (2004). Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrobial Agents and Chemotherapy 48, 852859.CrossRefGoogle ScholarPubMed
Passero, L. F. D., Tomokane, T. Y., Corbett, C. E. P., Laurenti, M. D. and Toyama, M. H. (2007). Comparative studies of the anti-leishmanial activity of three Crotalus durissus ssp. venoms. Parasitology Research 101, 13651371.CrossRefGoogle ScholarPubMed
Passero, L. F. D., Laurenti, M. D., Tomokane, T. Y., Corbett, C. E. P. and Toyama, M. H. (2008). The effect of phospholipase A2 from Crotalus durissus collilineatus on Leishmania (Leishmania) amazonensis infection. Parasitology Research 102, 10251033.CrossRefGoogle ScholarPubMed
Peichoto, M. E., Tavares, F. L., Dekrey, G. and Mackessy, S. P. (2011). Comparative study of the effects of venoms from five rear-fanged snake species on the growth of Leishmania major: identification of a protein with inhibitory activity against the parasite. Toxicon 58, 2834.CrossRefGoogle ScholarPubMed
Pereira, B. A. and Alves, C. R. (2008). Immunological characteristics of experimental murine infection with Leishmania (Leishmania) amazonensis. Veterinary Parasitology 58, 239255.CrossRefGoogle Scholar
Rodrigues, V. M., Soares, A. M., Mancin, A. C., Fontes, M. R. M., Homsi-Brandeburgo, M. I. and Giglio, J. R. (1998). Geographic variations in the composition of myotoxins from Bothrops neuwiedi snake venoms: biochemical characterization and biological activity. Comparative Biochemistry and Physiology Part A 121, 215222.CrossRefGoogle ScholarPubMed
Samy, R. P., Gopalakrishnakone, P., Thwin, M. M., Chow, T. K. V., Bow, H., Yap, E. H. and Thong, T. W. J. (2007). Antibacterial activity of snake, scorpion and bee venoms: a comparison with purified venom phospholipase A2 enzymes. Journal of Applied Microbiology 102, 650659.CrossRefGoogle Scholar
Santos, A. O., Ueda-Nakamura, T., Dias Filho, B. P., Veiga Junior, V. F., Pinto, A. C. and Nakamura, C. V. (2008). Effect of Brazilian copaiba oils on Leishmania amazonensis. Journal of Ethnopharmacology 120, 204208.CrossRefGoogle ScholarPubMed
Soares, A. M., Guerra-Sá, R., Borja-Oliveira, C. R., Rodrigues, V. M., Rodrigues-Simioni, L., Rodrigues, V., Fontes, M. R. M., Lomonte, B., Gutiérrez, J. M. and Giglio, J. R. (2000). Structural and functional characterization of BnSP-7 toxin, a Lys49 myotoxic phospholipase A2 homologue from Bothrops neuwiedi pauloensis venom. Archives of Biochemistry and Biophysics 378, 201209.CrossRefGoogle ScholarPubMed
Stábeli, R. G., Amui, S. F., Sant'ana, C. D., Pires, M. G., Nomizo, A., Monteiro, M. C., Romão, P. R. T., Guerra-Sá, R., Vieira, C. A., Giglio, J. R., Fontes, M. R. M. and Soares, A. M. (2006). Bothrops moojeni myotoxin-II, a Lys49-phospholipase A2 homologue: an example of function versatility of snake venom proteins. Comparative Biochemistry and Physiology, Part C 142, 371381.Google ScholarPubMed
Tanaka, A. K., Valero, V. B., Takahashi, H. K. and Straus, A. H. (2007). Inhibition of Leishmania (Leishmania) amazonensis growth and infectivity by aureobasidin A. Journal of Antimicrobial Chemotherapy 59, 487492.CrossRefGoogle ScholarPubMed
Tempone, A. G., Andrade, H. F., Spencer, P. J., Lourenço, C. O., Rogero, J. R. and Nascimento, N. (2001). Bothrops moojeni venom kills Leishmania spp. with hydrogen peroxide generated by its L-amino acid oxidase. Biochemical and Biophysical Research Communications 280, 620624.CrossRefGoogle ScholarPubMed
Torres, A. F. C., Dantas, R. T., Toyama, M. H., Filho, E. D., Zara, F. J., de Queiroz, M. G. R., Nogueira, N. A. P., de Oliveira, M. R., Toyama, D. O., Monteiro, H. S. A. and Martins, A. M. C. (2010). Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: phospholipase A2 and L-amino acid oxidase. Toxicon 55, 795804.CrossRefGoogle Scholar
van Deenen, L. L. M. and de Haas, G. H. (1963). The substrate specificity of phospholipase A2. Biochimica et Biophysica Acta 70, 538553.CrossRefGoogle Scholar