Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T16:26:03.619Z Has data issue: false hasContentIssue false

Bloodstream form trypanosome plasma membrane proteins: antigenic variation and invariant antigens

Published online by Cambridge University Press:  29 January 2010

ANGELA SCHWEDE*
Affiliation:
Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CambridgeCB2 1GA, UK
MARK CARRINGTON*
Affiliation:
Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CambridgeCB2 1GA, UK
*
*Corresponding author: [email protected]

Summary

Trypanosoma brucei is exposed to the adaptive immune system and complement in the blood of its mammalian hosts. The aim of this review is to analyse the role and regulation of the proteins present on the external face of the plasma membrane in the long-term persistence of an infection and transmission. In particular, the following are addressed: (1) antigenic variation of the variant surface glycoprotein (VSG), (2) the formation of an effective VSG barrier shielding invariant surface proteins, and (3) the rapid uptake of VSG antibody complexes combined with degradation of the immunoglobulin and recycling of the VSG.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bangs, J. D., Doering, T. L., Englund, P. T. and Hart, G. W. (1988). Biosynthesis of a variant surface glycoprotein of Trypanosoma brucei. Processing of the glycolipid membrane anchor and N-linked oligosaccharides. Journal of Biological Chemistry 263, 1769717705.CrossRefGoogle ScholarPubMed
Becker, M., Aitcheson, N., Byles, E., Wickstead, B., Louis, E. and Rudenko, G. (2004). Isolation of the repertoire of VSG expression site containing telomeres of Trypanosoma brucei 427 using transformation-associated recombination in yeast. Genome Research 14, 23192329. 14/11/2319 [pii] 10.1101/gr.2955304CrossRefGoogle ScholarPubMed
Bernards, A., Van der Ploeg, L. H., Frasch, A. C., Borst, P., Boothroyd, J. C., Coleman, S. and Cross, G. A. (1981). Activation of trypanosome surface glycoprotein genes involves a duplication-transposition leading to an altered 3′ end. Cell 27, 497505. 0092-8674(81)90391-3 [pii]CrossRefGoogle Scholar
Berriman, M., Ghedin, E., Hertz-Fowler, C., Blandin, G., Renauld, H., Bartholomeu, D. C., Lennard, N. J., Caler, E., Hamlin, N. E., Haas, B., Bohme, U., Hannick, L., Aslett, M. A., Shallom, J., Marcello, L., Hou, L., Wickstead, B., Alsmark, U. C., Arrowsmith, C., Atkin, R. J., Barron, A. J., Bringaud, F., Brooks, K., Carrington, M., Cherevach, I., Chillingworth, T. J., Churcher, C., Clark, L. N., Corton, C. H., Cronin, A., Davies, R. M., Doggett, J., Djikeng, A., Feldblyum, T., Field, M. C., Fraser, A., Goodhead, I., Hance, Z., Harper, D., Harris, B. R., Hauser, H., Hostetler, J., Ivens, A., Jagels, K., Johnson, D., Johnson, J., Jones, K., Kerhornou, A. X., Koo, H., Larke, N., Landfear, S., Larkin, C., Leech, V., Line, A., Lord, A., Macleod, A., Mooney, P. J., Moule, S., Martin, D. M., Morgan, G. W., Mungall, K., Norbertczak, H., Ormond, D., Pai, G., Peacock, C. S., Peterson, J., Quail, M. A., Rabbinowitsch, E., Rajandream, M. A., Reitter, C., Salzberg, S. L., Sanders, M., Schobel, S., Sharp, S., Simmonds, M., Simpson, A. J., Tallon, L., Turner, C. M., Tait, A., Tivey, A. R., Van Aken, S., Walker, D., Wanless, D., Wang, S., White, B., White, O., Whitehead, S., Woodward, J., Wortman, J., Adams, M. D., Embley, T. M., Gull, K., Ullu, E., Barry, J. D., Fairlamb, A. H., Opperdoes, F., Barrell, B. G., Donelson, J. E., Hall, N., Fraser, C. M., Melville, S. E. and El-Sayed, N. M. (2005). The genome of the African trypanosome Trypanosoma brucei. Science 309, 416422. 309/5733/416 [pii] 10.1126/science.1112642CrossRefGoogle ScholarPubMed
Blum, M. L., Down, J. A., Gurnett, A. M., Carrington, M., Turner, M. J. and Wiley, D. C. (1993). A structural motif in the variant surface glycoproteins of Trypanosoma brucei. Nature 362, 603609. 10.1038/362603a0CrossRefGoogle ScholarPubMed
Bohme, U. and Cross, G. A. (2002). Mutational analysis of the variant surface glycoprotein GPI-anchor signal sequence in Trypanosoma brucei. Journal of Cell Science 115, 805816.Google Scholar
Boothroyd, C. E., Dreesen, O., Leonova, T., Ly, K. I., Figueiredo, L. M., Cross, G. A. and Papavasiliou, F. N. (2009). A yeast-endonuclease-generated DNA break induces antigenic switching in Trypanosoma brucei. Nature 459, 278281. nature07982 [pii] 10.1038/nature07982Google Scholar
Borst, P. and Fairlamb, A. H. (1998). Surface receptors and transporters of Trypanosoma brucei. Annual Review of Microbiology 52, 745778. 10.1146/annurev.micro.52.1.745CrossRefGoogle ScholarPubMed
Brayton, K. A., Kappmeyer, L. S., Herndon, D. R., Dark, M. J., Tibbals, D. L., Palmer, G. H., McGuire, T. C. and Knowles, D. P. Jr. (2005). Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins. Proceedings of the National Academy of Sciences, USA 102, 844849. 0406656102 [pii]10.1073/pnas.0406656102Google Scholar
Bulow, R., Overath, P. and Davoust, J. (1988). Rapid lateral diffusion of the variant surface glycoprotein in the coat of Trypanosoma brucei. Biochemistry 27, 23842388.CrossRefGoogle ScholarPubMed
Bulow, R., Nonnengasser, C. and Overath, P. (1989). Release of the variant surface glycoprotein during differentiation of bloodstream to procyclic forms of Trypanosoma brucei. Molecular and Biochemical Parasitology 32, 8592. 0166-6851(89)90132-1 [pii]CrossRefGoogle ScholarPubMed
Bussler, H., Linder, M., Linder, D. and Reinwald, E. (1998). Determination of the disulfide bonds within a B domain variant surface glycoprotein from Trypanosoma congolense. Journal of Biological Chemistry 273, 3258232586.Google Scholar
Campbell, D. A., van Bree, M. P. and Boothroyd, J. C. (1984). The 5′-limit of transposition and upstream barren region of a trypanosome VSG gene: tandem 76 base-pair repeats flanking (TAA)90. Nucleic Acids Research 12, 27592774.CrossRefGoogle Scholar
Campillo, N. and Carrington, M. (2003). The origin of the serum resistance associated (SRA) gene and a model of the structure of the SRA polypeptide from Trypanosoma brucei rhodesiense. Molecular and Biochemical Parasitology 127, 7984. S0166685102003067 [pii]Google Scholar
Carrington, M., Miller, N., Blum, M., Roditi, I., Wiley, D. and Turner, M. (1991). Variant specific glycoprotein of Trypanosoma brucei consists of two domains each having an independently conserved pattern of cysteine residues. Journal of Molecular Biology 221, 823835. 0022-2836(91)80178-W [pii]CrossRefGoogle ScholarPubMed
Carrington, M. and Boothroyd, J. (1996). Implications of conserved structural motifs in disparate trypanosome surface proteins. Molecular and Biochemical Parasitology 81, 119126. 0166685196027065 [pii]Google Scholar
Chattopadhyay, A., Jones, N. G., Nietlispach, D., Nielsen, P. R., Voorheis, H. P., Mott, H. R. and Carrington, M. (2005). Structure of the C-terminal domain from Trypanosoma brucei variant surface glycoprotein MITat1.2. Journal of Biological Chemistry 280, 72287235. M410787200 [pii]10.1074/jbc.M410787200CrossRefGoogle ScholarPubMed
Chaves, I., Zomerdijk, J., Dirks-Mulder, A., Dirks, R. W., Raap, A. K. and Borst, P. (1998). Subnuclear localization of the active variant surface glycoprotein gene expression site in Trypanosoma brucei. Proceedings of the National Academy of Sciences, USA 95, 1232812333.CrossRefGoogle ScholarPubMed
Chaves, I., Rudenko, G., Dirks-Mulder, A., Cross, M. and Borst, P. (1999). Control of variant surface glycoprotein gene-expression sites in Trypanosoma brucei. EMBO Journal 18, 48464855. 10.1093/emboj/18.17.4846CrossRefGoogle ScholarPubMed
Conway, C., Proudfoot, C., Burton, P., Barry, J. D. and McCulloch, R. (2002). Two pathways of homologous recombination in Trypanosoma brucei. Molecular Microbiology 45, 16871700. 3122 [pii]Google Scholar
Engstler, M., Thilo, L., Weise, F., Grunfelder, C. G., Schwarz, H., Boshart, M. and Overath, P. (2004). Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. Journal of Cell Science 117, 11051115. 10.1242/jcs.00938117/7/1105 [pii]Google Scholar
Engstler, M., Pfohl, T., Herminghaus, S., Boshart, M., Wiegertjes, G., Heddergott, N. and Overath, P. (2007). Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131, 505515. S0092-8674(07)01144-0 [pii]10.1016/j.cell.2007.08.046Google Scholar
Ferguson, M. A., Homans, S. W., Dwek, R. A. and Rademacher, T. W. (1988). Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 239, 753759.CrossRefGoogle ScholarPubMed
Ferrante, A. and Allison, A. C. (1983). Alternative pathway activation of complement by African trypanosomes lacking a glycoprotein coat. Parasite Immunology 5, 491498.CrossRefGoogle ScholarPubMed
Figueiredo, L. M., Janzen, C. J. and Cross, G. A. (2008). A histone methyltransferase modulates antigenic variation in African trypanosomes. PLoS Biology 6, e161.08-PLBI-RA-1310 [pii]10.1371/journal.pbio.0060161Google Scholar
Freymann, D., Down, J., Carrington, M., Roditi, I., Turner, M. and Wiley, D. (1990). 2.9 A resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei. Journal of Molecular Biology 216, 141160.CrossRefGoogle ScholarPubMed
Graham, S. V., Terry, S. and Barry, J. D. (1999). A structural and transcription pattern for variant surface glycoprotein gene expression sites used in metacyclic stage Trypanosoma brucei. Molecular and Biochemical Parasitology 103, 141154. S0166-6851(99)00128-0 [pii]Google Scholar
Grandgenett, P. M., Otsu, K., Wilson, H. R., Wilson, M. E. and Donelson, J. E. (2007). A function for a specific zinc metalloprotease of African trypanosomes. PLoS pathogens 3, 14321445. 07-PLPA-RA-0450 [pii]10.1371/journal.ppat.0030150Google Scholar
Grunfelder, C. G., Engstler, M., Weise, F., Schwarz, H., Stierhof, Y. D., Morgan, G. W., Field, M. C. and Overath, P. (2003). Endocytosis of a glycosylphosphatidylinositol-anchored protein via clathrin-coated vesicles, sorting by default in endosomes, and exocytosis via RAB11-positive carriers. Molecular Biology of the Cell 14, 20292040. 10.1091/mbc.E02-10-0640E02-10-0640 [pii]Google Scholar
Gunzl, A., Bruderer, T., Laufer, G., Schimanski, B., Tu, L. C., Chung, H. M., Lee, P. T. and Lee, M. G. (2003). RNA polymerase I transcribes procyclin genes and variant surface glycoprotein gene expression sites in Trypanosoma brucei. Eukaryotic Cell 2, 542551.Google Scholar
Hartley, C. L. and McCulloch, R. (2008). Trypanosoma brucei BRCA2 acts in antigenic variation and has undergone a recent expansion in BRC repeat number that is important during homologous recombination. Molecular Microbiology 68, 12371251. MMI6230 [pii]10.1111/j.1365-2958.2008.06230.xCrossRefGoogle ScholarPubMed
Hertz-Fowler, C., Figueiredo, L. M., Quail, M. A., Becker, M., Jackson, A., Bason, N., Brooks, K., Churcher, C., Fahkro, S., Goodhead, I., Heath, P., Kartvelishvili, M., Mungall, K., Harris, D., Hauser, H., Sanders, M., Saunders, D., Seeger, K., Sharp, S., Taylor, J. E., Walker, D., White, B., Young, R., Cross, G. A., Rudenko, G., Barry, J. D., Louis, E. J. and Berriman, M. (2008). Telomeric expression sites are highly conserved in Trypanosoma brucei. PLoS ONE 3, 3527. 10.1371/journal.pone.0003527Google Scholar
Horn, D. and Barry, J. D. (2005). The central roles of telomeres and subtelomeres in antigenic variation in African trypanosomes. Chromosome Research 13, 525533. 10.1007/s10577-005-0991-8Google Scholar
Hsia, R., Beals, T. and Boothroyd, J. C. (1996). Use of chimeric recombinant polypeptides to analyse conformational, surface epitopes on trypanosome variant surface glycoproteins. Molecular Microbiology 19, 5363.Google Scholar
Hughes, K., Wand, M., Foulston, L., Young, R., Harley, K., Terry, S., Ersfeld, K. and Rudenko, G. (2007). A novel ISWI is involved in VSG expression site downregulation in African trypanosomes. EMBO Journal 26, 24002410. 7601678 [pii]10.1038/sj.emboj.7601678Google Scholar
Hutchinson, O. C., Smith, W., Jones, N. G., Chattopadhyay, A., Welburn, S. C. and Carrington, M. (2003). VSG structure: similar N-terminal domains can form functional VSGs with different types of C-terminal domain. Molecular and Biochemical Parasitology 130, 127131. S0166685103001440 [pii]CrossRefGoogle ScholarPubMed
Hutchinson, O. C., Picozzi, K., Jones, N. G., Mott, H., Sharma, R., Welburn, S. C. and Carrington, M. (2007). Variant Surface Glycoprotein gene repertoires in Trypanosoma brucei have diverged to become strain-specific. BMC Genomics 8, 234. 1471-2164-8-234 [pii]10.1186/1471-2164-8-234Google Scholar
Jackson, D. G., Owen, M. J. and Voorheis, H. P. (1985). A new method for the rapid purification of both the membrane-bound and released forms of the variant surface glycoprotein from Trypanosoma brucei. Biochemical Journal 230, 195202.Google Scholar
Jeffries, T. R., Morgan, G. W. and Field, M. C. (2001). A developmentally regulated rab11 homologue in Trypanosoma brucei is involved in recycling processes. Journal of Cell Science 114, 26172626.Google Scholar
Johnson, P. J., Kooter, J. M. and Borst, P. (1987). Inactivation of transcription by UV irradiation of T. brucei provides evidence for a multicistronic transcription unit including a VSG gene. Cell 51, 273281. 0092-8674(87)90154-1 [pii]CrossRefGoogle ScholarPubMed
Jones, N. G., Nietlispach, D., Sharma, R., Burke, D. F., Eyres, I., Mues, M., Mott, H. R. and Carrington, M. (2008). Structure of a glycosylphosphatidylinositol-anchored domain from a trypanosome variant surface glycoprotein. Journal of Biological Chemistry 283, 35843593. M706207200 [pii]10.1074/jbc.M706207200Google Scholar
Kooter, J. M., van der Spek, H. J., Wagter, R., d'Oliveira, C. E., van der Hoeven, F., Johnson, P. J. and Borst, P. (1987). The anatomy and transcription of a telomeric expression site for variant-specific surface antigens in T. brucei. Cell 51, 261272. 0092-8674(87)90153-X [pii]Google Scholar
Lamont, G. S., Tucker, R. S. and Cross, G. A. (1986). Analysis of antigen switching rates in Trypanosoma brucei. Parasitology 92, 355367.Google Scholar
Landeira, D. and Navarro, M. (2007). Nuclear repositioning of the VSG promoter during developmental silencing in Trypanosoma brucei. Journal of Cell Biology 176, 133139. jcb.200607174 [pii]10.1083/jcb.200607174CrossRefGoogle ScholarPubMed
Landeira, D., Bart, J. M., Van Tyne, D. and Navarro, M. (2009). Cohesin regulates VSG monoallelic expression in trypanosomes. Journal of Cell Biology 186, 243254. jcb.200902119 [pii]10.1083/jcb.200902119CrossRefGoogle ScholarPubMed
Leppert, B. J., Mansfield, J. M. and Paulnock, D. M. (2007). The soluble variant surface glycoprotein of African trypanosomes is recognized by a macrophage scavenger receptor and induces I kappa B alpha degradation independently of TRAF6-mediated TLR signaling. Journal of Immunology 179, 548556. 179/1/548 [pii]Google Scholar
Linardopoulou, E. V., Williams, E. M., Fan, Y., Friedman, C., Young, J. M. and Trask, B. J. (2005). Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437, 94–100. nature04029 [pii] 10.1038/nature04029CrossRefGoogle ScholarPubMed
Liu, A. Y., Michels, P. A., Bernards, A. and Borst, P. (1985). Trypanosome variant surface glycoprotein genes expressed early in infection. Journal of Molecular Biology 182, 383396. 0022-2836(85)90198-6 [pii]CrossRefGoogle ScholarPubMed
Lythgoe, K. A., Morrison, L. J., Read, A. F. and Barry, J. D. (2007). Parasite-intrinsic factors can explain ordered progression of trypanosome antigenic variation. Proceedings of the National Academy of Sciences, USA 104, 80958100. 0606206104 [pii]10.1073/pnas.0606206104CrossRefGoogle ScholarPubMed
Mansfield, J. M. and Paulnock, D. M. (2005). Regulation of innate and acquired immunity in African trypanosomiasis. Parasite Immunology 27, 361371. PIM791 [pii]10.1111/j.1365-3024.2005.00791.xGoogle Scholar
Marcello, L. and Barry, J. D. (2007). Analysis of the VSG gene silent archive in Trypanosoma brucei reveals that mosaic gene expression is prominent in antigenic variation and is favored by archive substructure. Genome Research 17, 13441352. gr.6421207 [pii]10.1101/gr.6421207Google Scholar
Matthews, K. R., Shiels, P. G., Graham, S. V., Cowan, C. and Barry, J. D. (1990). Duplicative activation mechanisms of two trypanosome telomeric VSG genes with structurally simple 5′ flanks. Nucleic Acids Research 18, 72197227.CrossRefGoogle ScholarPubMed
McCulloch, R. and Barry, J. D. (1999). A role for RAD51 and homologous recombination in Trypanosoma brucei antigenic variation. Genes and development 13, 28752888.Google Scholar
Mehlert, A., Bond, C. S. and Ferguson, M. A. (2002). The glycoforms of a Trypanosoma brucei variant surface glycoprotein and molecular modeling of a glycosylated surface coat. Glycobiology 12, 607612.Google Scholar
Melville, S. E., Leech, V., Gerrard, C. S., Tait, A. and Blackwell, J. M. (1998). The molecular karyotype of the megabase chromosomes of Trypanosoma brucei and the assignment of chromosome markers. Molecular and Biochemical Parasitology 94, 155173. S0166-6851(98)00054-1 [pii]Google Scholar
Morgan, G. W., Allen, C. L., Jeffries, T. R., Hollinshead, M. and Field, M. C. (2001). Developmental and morphological regulation of clathrin-mediated endocytosis in Trypanosoma brucei. Journal of Cell Science 114, 26052615.Google Scholar
Morgan, G. W., Hall, B. S., Denny, P. W., Carrington, M. and Field, M. C. (2002). The kinetoplastida endocytic apparatus. Part I: a dynamic system for nutrition and evasion of host defences. Trends in Parasitology 18, 491496. S1471492202023917 [pii]CrossRefGoogle Scholar
Morrison, L. J., Majiwa, P., Read, A. F. and Barry, J. D. (2005). Probabilistic order in antigenic variation of Trypanosoma brucei. International Journal for Parasitology 35, 961972. S0020-7519(05)00171-2 [pii]10.1016/j.ijpara.2005.05.004Google Scholar
Mussmann, R., Janssen, H., Calafat, J., Engstler, M., Ansorge, I., Clayton, C. and Borst, P. (2003). The expression level determines the surface distribution of the transferrin receptor in Trypanosoma brucei. Molecular Microbiology 47, 2335. 3245 [pii]Google Scholar
Natesan, S. K., Peacock, L., Matthews, K., Gibson, W. and Field, M. C. (2007). Activation of endocytosis as an adaptation to the mammalian host by trypanosomes. Eukaryotic Cell 6, 20292037. EC.00213-07 [pii]10.1128/EC.00213-07Google Scholar
Navarro, M. and Gull, K. (2001). A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei. Nature 414, 759763. 10.1038/414759a414759a [pii]Google Scholar
Overath, P. and Engstler, M. (2004). Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Molecular Microbiology 53, 735744. 10.1111/j.1365-2958.2004.04224.xMMI4224 [pii]CrossRefGoogle ScholarPubMed
Pal, A., Hall, B. S., Jeffries, T. R. and Field, M. C. (2003). Rab5 and Rab11 mediate transferrin and anti-variant surface glycoprotein antibody recycling in Trypanosoma brucei. Biochemical Journal 374, 443451.10.1042/BJ20030469BJ20030469 [pii]Google Scholar
Palmer, G. H., Futse, J. E., Knowles, D. P. Jr. and Brayton, K. A. (2006). Insights into mechanisms of bacterial antigenic variation derived from the complete genome sequence of Anaplasma marginale. Annals of the New York Academy of Sciences 1078, 1525. 1078/1/15 [pii]10.1196/annals.1374.002Google Scholar
Pays, E., Guyaux, M., Aerts, D., Van Meirvenne, N. and Steinert, M. (1985). Telomeric reciprocal recombination as a possible mechanism for antigenic variation in trypanosomes. Nature 316, 562564.CrossRefGoogle ScholarPubMed
Proudfoot, C. and McCulloch, R. (2005). Distinct roles for two RAD51-related genes in Trypanosoma brucei antigenic variation. Nucleic Acids Research 33, 69066919. 33/21/6906 [pii]10.1093/nar/gki996Google Scholar
Robinson, N. P., Burman, N., Melville, S. E. and Barry, J. D. (1999). Predominance of duplicative VSG gene conversion in antigenic variation in African trypanosomes. Molecular and Cellular Biology 19, 58395846.Google Scholar
Rudenko, G., Blundell, P. A., Dirks-Mulder, A., Kieft, R. and Borst, P. (1995). A ribosomal DNA promoter replacing the promoter of a telomeric VSG gene expression site can be efficiently switched on and off in T. brucei. Cell 83, 547553. 0092-8674(95)90094-2 [pii]Google Scholar
Salmon, D., Hanocq-Quertier, J., Paturiaux-Hanocq, F., Pays, A., Tebabi, P., Nolan, D. P., Michel, A. and Pays, E. (1997). Characterization of the ligand-binding site of the transferrin receptor in Trypanosoma brucei demonstrates a structural relationship with the N-terminal domain of the variant surface glycoprotein. EMBO Journal 16, 72727278. 10.1093/emboj/16.24.7272CrossRefGoogle ScholarPubMed
Schwartz, K. J., Peck, R. F., Tazeh, N. N. and Bangs, J. D. (2005). GPI valence and the fate of secretory membrane proteins in African trypanosomes. Journal of Cell Science 118, 54995511. jcs.02667 [pii]10.1242/jcs.02667Google Scholar
Schwartz, K. J. and Bangs, J. D. (2007). Regulation of protein trafficking by glycosylphosphatidylinositol valence in African trypanosomes. Journal of Eukaryotic Microbiology 54, 2224. JEU231 [pii]10.1111/j.1550-7408.2006.00231.xCrossRefGoogle ScholarPubMed
Seyfang, A., Mecke, D. and Duszenko, M. (1990). Degradation, recycling, and shedding of Trypanosoma brucei variant surface glycoprotein. Journal of Protozoology 37, 546552.Google Scholar
Steverding, D. (2003). The significance of transferrin receptor variation in Trypanosoma brucei. Trends in Parasitology 19, 125127. S1471492203000060 [pii]Google Scholar
Thilo, L. (1985). Quantification of endocytosis-derived membrane traffic. Biochimica et Biophysica Acta 822, 243266. 0304-4157(85)90010-3 [pii]Google Scholar
Triggs, V. P. and Bangs, J. D. (2003). Glycosylphosphatidylinositol-dependent protein trafficking in bloodstream stage Trypanosoma brucei. Eukaryotic Cell 2, 7683.CrossRefGoogle ScholarPubMed
Turner, C. M. and Barry, J. D. (1989). High frequency of antigenic variation in Trypanosoma brucei rhodesiense infections. Parasitology 99, 6775.Google Scholar
Turner, C. M. (1997). The rate of antigenic variation in fly-transmitted and syringe-passaged infections of Trypanosoma brucei. FEMS Microbiology Letters 153, 227231. S0378-1097(97)00266-8 [pii]CrossRefGoogle ScholarPubMed
van Leeuwen, F., Wijsman, E. R., Kieft, R., van der Marel, G. A., van Boom, J. H. and Borst, P. (1997). Localization of the modified base J in telomeric VSG gene expression sites of Trypanosoma brucei. Genes and Development 11, 32323241.Google Scholar
Vanhamme, L., Poelvoorde, P., Pays, A., Tebabi, P., Van Xong, H. and Pays, E. (2000). Differential RNA elongation controls the variant surface glycoprotein gene expression sites of Trypanosoma brucei. Molecular Microbiology 36, 328340 mmi1844 [pii]Google Scholar
Vickerman, K. (1969). On the surface coat and flagellar adhesion in trypanosomes. Journal of Cell Science 5, 163193.CrossRefGoogle ScholarPubMed
Wang, J., Bohme, U. and Cross, G. A. (2003). Structural features affecting variant surface glycoprotein expression in Trypanosoma brucei. Molecular and Biochemical Parasitology 128, 135145. S0166685103000550 [pii]Google Scholar
Weiden, M., Osheim, Y. N., Beyer, A. L. and Van der Ploeg, L. H. (1991). Chromosome structure: DNA nucleotide sequence elements of a subset of the minichromosomes of the protozoan Trypanosoma brucei. Molecular and Cellular Biology 11, 38233834.Google ScholarPubMed
Wickstead, B., Ersfeld, K. and Gull, K. (2004). The small chromosomes of Trypanosoma brucei involved in antigenic variation are constructed around repetitive palindromes. Genome Research 14, 10141024. 10.1101/gr.222770414/6/1014 [pii]Google Scholar
Xong, H. V., Vanhamme, L., Chamekh, M., Chimfwembe, C. E., Van Den Abbeele, J., Pays, A., Van Meirvenne, N., Hamers, R., De Baetselier, P. and Pays, E. (1998). A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 95, 839846. S0092-8674(00)81706-7 [pii]Google Scholar
Young, R., Taylor, J. E., Kurioka, A., Becker, M., Louis, E. J. and Rudenko, G. (2008). Isolation and analysis of the genetic diversity of repertoires of VSG expression site containing telomeres from Trypanosoma brucei gambiense, T. b. brucei and T. equiperdum. BMC Genomics 9, 385. 1471-2164-9-385 [pii]10.1186/1471-2164-9-385Google Scholar
Zamze, S. E., Wooten, E. W., Ashford, D. A., Ferguson, M. A., Dwek, R. A. and Rademacher, T. W. (1990). Characterisation of the asparagine-linked oligosaccharides from Trypanosoma brucei type-I variant surface glycoproteins. European Journal of Biochemistry/FEBS 187, 657663.Google Scholar
Ziegelbauer, K., Multhaup, G. and Overath, P. (1992). Molecular characterization of two invariant surface glycoproteins specific for the bloodstream stage of Trypanosoma brucei. Journal of Biological Chemistry 267, 1079710803.Google Scholar
Ziegelbauer, K. and Overath, P. (1993). Organization of two invariant surface glycoproteins in the surface coat of Trypanosoma brucei. Infection and Immunity 61, 45404545.Google Scholar
Zitzmann, N., Mehlert, A., Carrouee, S., Rudd, P. M. and Ferguson, M. A. (2000). Protein structure controls the processing of the N-linked oligosaccharides and glycosylphosphatidylinositol glycans of variant surface glycoproteins expressed in bloodstream form Trypanosoma brucei. Glycobiology 10, 243249. cwd030 [pii]Google Scholar