Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T00:35:20.166Z Has data issue: false hasContentIssue false

Biomphalaria glabrata: changes in calcium reserves following parasitism by larval Schistosoma mansoni

Published online by Cambridge University Press:  06 April 2009

M. K. Shaw
Affiliation:
Department of Zoology, University College, P.O. Box 78, Cardiff CF1 1XL, Wales
D. A. Erasmus
Affiliation:
Department of Zoology, University College, P.O. Box 78, Cardiff CF1 1XL, Wales

Summary

Larval Schistosoma mansoni have been shown to induce morphological changes to the internal calcium reserves (in particular the calcareous inclusions in Type A calcium cells and to the inner, nacreous layer of the shell) of Biomphalaria glabrata within 48 h of miracidial penetration. Control experiments have shown that these changes were not due to either the experimental procedures used, mechanical damage or to starvation effects. The effects were, however, analogous to experimentally induced acidosis, suggesting that the rapidly transforming miracidium-sporocyst quickly induces changes in the host's metabolism, presumably by the production and release of CO2 and waste metabolites into the haemolymph.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleton, C. C. (1978). Review of literature on abiotic factors influencing the distribution and life cycles of bilharziasis intermediate host snails. Malacological Review 11, 125.Google Scholar
Becker, W. (1980). Metabolic interrelationship of parasitic trematodes and molluscs, especially Schistosoma mansoni in Biomphalaria glabrata. Zeitschrift für Parasitenkunde 63, 101–11.CrossRefGoogle ScholarPubMed
Brown, D. S. (1980). Freshwater Snails of Africa and their Medical Importance. London: Taylor & Francis.Google Scholar
Cheng, T. C. (1971). Enhanced growth as a manifestation of parasitism and shell deposition in parasitized mollusks. In Aspects of the Biology of Symbiosis (ed. Cheng, T. C.), pp. 103137. Baltimore: University Park Press.Google Scholar
Davies, T. W. (1983). Schistosoma mansoni: the structure and elemental composition of pre-acetabular gland cell secretion in pre-emergent cercariae. Parasitology 87, 5560.CrossRefGoogle ScholarPubMed
Davies, T. W. & Erasmus, D. A. (1984). Biomphalaria glabrata: an ultrastructural study of the effect of parasitism by larval Schistosoma mansoni on the calcium reserves of the host. Cell and Tissue Research 236, 643–9.CrossRefGoogle ScholarPubMed
Dorsey, C. H. & Stirewalt, M. A. (1977). Schistosoma mansoni: Localization of calcium-detecting reagents in electron-lucent areas of specific preacetabular gland granules. Zeitschrift für Parasitenkunde 54, 165–73.CrossRefGoogle ScholarPubMed
Dresden, M. H. & Asch, H. L. (1977). Calcium carbonate content of the pre-acetabular glands of Schistosoma mansoni cercariae. Journal of Parasitology 63, 163–5.CrossRefGoogle Scholar
Dresden, M. H. & Edlin, E. M. (1975). Schistosoma mansoni: Calcium content of cercariae and its effects on protease activity in vitro. Journal of Parasitology 61, 398402.CrossRefGoogle Scholar
Dusanic, D. G. & Lewert, R. M. (1963). Alterations of proteins and free amino acids of Australorbis glabratus haemolymph after exposure to Schistosoma mansoni miracidia. Journal of Infectious Diseases 112, 243–6.CrossRefGoogle Scholar
Erasmus, D. A. (1972). The Biology of Trematodes. London: Edward Arnold.Google Scholar
Etges, F. J., Carter, O. S. & Webbe, G. (1975). Behavioural and developmental physiology of schistosome larvae as related to their molluscan hosts. Annals of the New York Academy of Sciences 266, 480–96.CrossRefGoogle ScholarPubMed
Granath, W. O. & Yoshino, T. P. (1983). Lysosomal enzyme activities in susceptible and refractory strains of Biomphalaria glabrata during the course of infection with Schistosoma mansoni. Journal of Parasitology 69, 1018–26.CrossRefGoogle ScholarPubMed
Greenaway, P. (1971). Calcium regulation in the freshwater mollusc Limnaea, stagnalis (L) (Gastropoda: Pulmonata). II. Calcium movements between internal calcium compartments. Journal of Experimental Biology 54, 609–20.CrossRefGoogle ScholarPubMed
Malek, E. A. (1980). Snail-transmitted Parasitic Diseases, vol. 1. Florida: CRC Press.Google Scholar
Malek, E. A. & Cheng, T. C. (1974). Medical and Economic Malacology. New York and London: Academic Press.Google Scholar
Meuleman, E. A. (1972). Host-parasite interrelationships between the freshwater pulmonate Biomphalaria pfeifferi and the trematode Schistosoma mansoni. Netherlands Journal of Zoology 22, 355427.CrossRefGoogle Scholar
Meuleman, E. A., Lyaruu, D. M., Khan, M. A., Holzmann, P. J. & Sminia, T. (1978). Ultra-structural changes in the body wall of Schistosoma mansoni during the transformation of the miracidium into the mother sporocyst in the snail host Biomphalaria pfeifferi. Zeitschrift für Parasitenkunde 56, 277–42.CrossRefGoogle Scholar
Meuleman, E. A., Holzmann, P. J. & Peet, R. C. (1980). The development of daughter sporocysts inside the mother sporocyst of Schistosoma mansoni with special reference to the ultrastructure of the body wall. Zeitschrift für Parasitenkunde 61, 201–12.CrossRefGoogle Scholar
Nduku, W. K. & Harrison, A. D. (1976). Calcium as a limiting factor in the biology of Biomphalaria pfeifferi (Krauss) (Gastropoda: Planorbidae). Hydrobiologia 49, 143–70.CrossRefGoogle Scholar
Sminia, T., With, N. D. de, Bos, J. L., van Nieuwmegen, M. E., Witter, M. P. & Wondergem, J. (1977). Structure and function of the calcium cells of the freshwater pulmonate snail Lymnaea stagnalis. Netherlands Journal of Zoology 27, 195208.Google Scholar
Smyth, J. D. & Halton, D. W. (1984). The Physiology of Trematodes, 2nd ed.Cambridge: Cambridge University Press.Google Scholar
Stumpf, J. L. & Gilbertson, D. E. (1978). Hemocytes of Biomphalaria glabrata: Factors affecting variability. Journal of Invertebrate Pathology 32, 177–81.CrossRefGoogle ScholarPubMed
Stumpf, J. L. & Gilbertson, D. E. (1980). Differential leukocytic responses of Biomphalaria glabrata to infection with Schistosoma mansoni. Journal of Invertebrate Pathology 35, 217–18.CrossRefGoogle ScholarPubMed
Thomas, J. D., Benjamin, M., Lough, A. & Aram, R. H. (1974). The effects of calcium in the external environment on the growth and natality rates of Biomphalaria glabrata (Say). Journal of Animal Ecology 43, 839–60.CrossRefGoogle Scholar
Thompson, S. N. & Lee, R. W. K. (1985). 31P NMR studies on adenylates and other phosphorus metabolites in the schistosome vector Biomphalaria glabrata. Journal of Parasitology 71, 652–61.CrossRefGoogle ScholarPubMed
Thompson, S. N. & Lee, R. W. K. (1986). Comparison of starvation and infection by Schistosoma mansoni on tissue viability and the 31P NMR spectrum of Biomphalaria glabrata. Zeitschrift für Parasitenkunde 72, 417–21.CrossRefGoogle ScholarPubMed
Thompson, S. N. & Yamada, K. (1984). The adenylate nucleotide pool in the digestive gland-gonad complex of Biomphalaria glabrata infected by Schistosoma mansoni. Molecular and Biochemical Parasitology 13, 323–31.CrossRefGoogle ScholarPubMed
Williams, C. L. & Gilbertson, D. E. (1983). Altered feeding responses as a cause for the altered heartbeat rate and locomotor activity of Schistosoma mansoni-infected Biomphalaria glabrata. Journal of Parasitology 69, 671–6.CrossRefGoogle ScholarPubMed
With, N. D. de & Sminia, T. (1980). The effects of the nutritional state and the external calcium concentration on the ionic composition of the haemolymph and on the calcium cells in the pulmonate freshwater snail Lymnaea stagnalis. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C, 83, 217–27.Google Scholar
Wright, C. A. (1966). The pathogenesis of helminths in the Mollusca. Helminthological Abstracts 35, 207–24.Google Scholar