Published online by Cambridge University Press: 06 April 2009
Glucose is utilized as a significant source of metabolic energy by Leishmania parasites. This sugar is accumulated by the parasite via a specific carrier-mediated transport system located in the parasite membrane. Parasites may also contain another transporter that shuttles glucose between the cytoplasm and the glycosome, a membrane-bound organelle where the early steps of glycolysis occur. The transport systems of both the insect stage promastigotes and the intracellular amastigotes have been characterized and shown to have kinetic properties that are consistent with the different physio-logical environments of the insect gut and the macrophage phagolysosome. Several genes have been cloned from Leishmania species which encode proteins with substantial sequence similarity to glucose transporters from mammals and lower eukaryotes. Two of these genes are expressed preferentially in the promastigote stage of the life cycle, where glucose is more readily available and more rapidly transported and metabolized than in the intracellular amastigotes. One of these two developmentally-regulated genes has been functionally expressed in Xenopus oocytes and shown to encode a glucose transporter. A third gene encodes a protein that is also a member of the glucose transporter family on the basis of sequence similarity and proposed secondary structure. However, the significant differences between this protein and the other two suggest that it is likely to transport a different substrate. Functional expression will be required to define the specific biochemical role of each gene within the parasite.