Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T01:08:43.491Z Has data issue: false hasContentIssue false

The astacin metalloprotease moulting enzyme NAS-36 is required for normal cuticle ecdysis in free-living and parasitic nematodes

Published online by Cambridge University Press:  27 August 2010

GILLIAN STEPEK
Affiliation:
Division of Infection and Immunity, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
GILLIAN McCORMACK
Affiliation:
Division of Infection and Immunity, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
ANDREW J. BIRNIE
Affiliation:
Division of Infection and Immunity, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
ANTONY P. PAGE*
Affiliation:
Division of Infection and Immunity, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
*
*Corresponding author: Division of Infection and Immunity, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK. Tel: +44 141 330 1997. Fax: +44 141 330 5603. E-mail: [email protected]

Summary

Nematodes represent one of the most abundant and species-rich groups of animals on the planet, with parasitic species causing chronic, debilitating infections in both livestock and humans worldwide. The prevalence and success of the nematodes is a direct consequence of the exceptionally protective properties of their cuticle. The synthesis of this cuticle is a complex multi-step process, which is repeated 4 times from hatchling to adult and has been investigated in detail in the free-living nematode, Caenorhabditis elegans. This process is known as moulting and involves numerous enzymes in the synthesis and degradation of the collagenous matrix. The nas-36 and nas-37 genes in C. elegans encode functionally conserved enzymes of the astacin metalloprotease family which, when mutated, result in a phenotype associated with the late-stage moulting defects, namely the inability to remove the preceding cuticle. Extensive genome searches in the gastrointestinal nematode of sheep, Haemonchus contortus, and in the filarial nematode of humans, Brugia malayi, identified NAS-36 but not NAS-37 homologues. Significantly, the nas-36 gene from B. malayi could successfully complement the moult defects associated with C. elegans nas-36, nas-37 and nas-36/nas-37 double mutants, suggesting a conserved function for NAS-36 between these diverse nematode species. This conservation between species was further indicated when the recombinant enzymes demonstrated a similar range of inhibitable metalloprotease activities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albertson, D. G. and Thomson, J. N. (1976). The pharynx of Caenorhabditis elegans. Philosophical Transactions of the Royal Society London. Series B 275, 299325. doi: 10.1098/rstb.1976.0085.Google Scholar
Altreuther, G., Buch, J., Charles, S. D., Davis, W. L., Krieger, K. J. and Radeloff, I. (2005). Field evaluation of the efficacy and safety of emodepside/praziquantel spot-on solution against naturally acquired nematode and cestode infections in domestic cats. Parasitology Research 97 (Suppl. 1) S58–S64. doi: 10.1007/s00436-005-1445-0.Google Scholar
Bartley, D. J., Donnan, A. A., Jackson, E., Sargison, N., Mitchell, G. B. B. and Jackson, F. (2006). A small scale survey of ivermectin resistance in sheep nematodes using the faecal egg count reduction test on samples collected from Scottish sheep. Veterinary Parasitology 137, 112118. doi: 10.1016/j.vetpar.2005.12.014.CrossRefGoogle ScholarPubMed
Besier, B. (2007). New anthelmintics for livestock: the time is right. Trends in Parasitology 23, 2124. doi: 10.1016/j.pt.2006.11.004.CrossRefGoogle ScholarPubMed
Bird, A. F. (1987). Moulting of parasitic nematodes. International Journal for Parasitology 17, 233239. doi: 10.1016/0020-7519(87)90046-4.Google Scholar
Blaxter, M. L., De Ley, P., Garey, J. R., Liu, L. X., Scheldeman, P., Vierstraete, A., Vanfleteren, J. R., Mackey, L. Y., Dorris, M., Frisse, L. M., Vida, J. T. and Thomas, W. K. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature, London 392, 7175. doi: 10.1038/32160.CrossRefGoogle ScholarPubMed
Bond, J. S. and Beynon, R. J. (1995). The astacin family of metalloendopeptidases. Protein Science 4, 12471261. doi: 10.1002/pro.5560040701.CrossRefGoogle ScholarPubMed
Borchert, N., Becker-Pauly, C., Wagner, A., Fischer, P, Stöcker, W. and Brattig, N. W. (2007). Identification and characterization of onchoastacin, an astacin-like metalloproteinase from the filaria Onchocerca volvulus. Microbes and Infection 9, 498506. doi: 10.1016/j.micinf.2007.01.007.Google Scholar
Davis, M. W., Birnie, A. J., Chan, A. C., Page, A. P. and Jorgensen, E. M. (2004). A conserved metalloprotease mediates ecdysis in Caenorhabditis elegans. Development 131, 60016008. doi: 10.1242/dev.01454.CrossRefGoogle ScholarPubMed
Ducray, P., Gauvry, N., Pautrat, F., Goebel, T., Fruechtel, J., Desaules, Y., Weber, S. S., Bouvier, J., Wagner, T., Froelich, O. and Kaminsky, R. (2008). Discovery of amino-acetonitrile derivatives, a new class of synthetic anthelmintic compounds. Bioorganic & Medicinal Chemistry Letters 18, 29352938. doi: 10.1016/j.bmcl.2008.03.071.CrossRefGoogle ScholarPubMed
Ford, L., Zhang, J., Liu, J., Hashmi, S., Fuhrman, J. A., Oksov, Y. and Lustigman, S. (2009). Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference. PLoS Neglected Tropical Diseases 3, e377. doi: 10.1371/journal.pntd.0000377.Google Scholar
Gallego, S. G., Loukas, A., Slade, R. W., Neva, F. A., Varatharajalu, R., Nutman, T. B. and Brindley, P. J. (2005). Identification of an astacin-like metallo-proteinase transcript from the infective larvae of Strongyloides stercoralis. Parasitology International 54, 123133. doi: 10.1016/j.parint.2005.02.002.Google Scholar
Gamble, H. R., Fetterer, R. H. and Mansfield, L. S. (1996). Developmentally regulated zinc metalloproteinases from third- and fourth-stage larvae of the ovine nematode Haemonchus contortus. Journal of Parasitology 82, 197202. doi: 10.2307/3284145.CrossRefGoogle ScholarPubMed
Gamble, H. R., Purcell, J. P. and Fetterer, R. H. (1989). Purification of a 44 kilodalton protease which mediates the ecdysis of infective Haemonchus contortus larvae. Molecular and Biochemical Parasitology 33, 4958. doi: 10.1016/0166-6851(89)90041-8.CrossRefGoogle ScholarPubMed
Ghedin, E., Wang, S., Spiro, D., Caler, E., Zhao, Q., Crabtree, J., Allen, J. E., Delcher, A. L., Guiliano, D. B., Miranda-Saavedra, D., Angiuoli, S. V., Creasy, T., Amedeo, P., Haas, B., El-Sayed, N. M., Wortman, J. R., Feldblyum, T., Tallon, L., Schatz, M., Shumway, M., Koo, H., Salzberg, S. L., Schobel, S., Pertea, M., Pop, M., White, O., Barton, G. J., Carlow, C. K. S., Crawford, M. J., Daub, J., Dimmic, M. W., Estes, C. F., Foster, J. M., Ganatra, M., Gregory, W. F., Johnson, N. M., Jin, J. M., Komuniecki, R., Korf, I., Kumar, S., Laney, S., Li, B. W., Li, W., Lindblom, T. H., Lustigman, S., Ma, D., Maina, C. V., Martin, D. M. A., McCarter, J. P., McReynolds, L., Mitreva, M., Nutman, T. B., Parkinson, J., Peregrin-Alvarez, J. M., Poole, C., Ren, Q. H., Saunders, L., Sluder, A. E., Smith, K., Stanke, M., Unnasch, T. R., Ware, J., Wei, A. D., Weil, G., Williams, D. J., Zhang, Y. H., Fraser-Liggett, C., Slatko, B., Blaxter, M. L. and Scott, A. L. (2007). Draft genome of the filarial nematode parasite Brugia malayi. Science 317, 17561760. doi: 10.1126/science.1145406.CrossRefGoogle ScholarPubMed
Guiliano, D. B., Hong, X., McKerrow, J. H., Blaxter, M. L., Oksov, Y., Liu, J., Ghedin, E. and Lustigman, S. (2004). A gene family of cathepsin L-like proteases of filarial nematodes are associated with larval moulting and cuticle and eggshell remodelling. Molecular and Biochemical Parasitology 136, 227242. doi: 10.1016/j.molbiopara.2004.03.015.Google Scholar
Harder, A., Schmitt-Wrede, H. P., Krücken, J., Marinovski, P., Wunderlich, F., Willson, J., Amliwala, K., Holden-Dye, L. and Walker, R. (2003). Cyclooctadepsipeptides--an anthelmintically active class of compounds exhibiting a novel mode of action. International Journal of Antimicrobial Agents 22, 318331. doi: 10.1016/S0924-8579(03)00219-X.Google Scholar
Hashmi, S., Zhang, J., Oksov, Y. and Lustigman, S. (2004). The Caenorhabditis elegans cathepsin Z-like cysteine protease, Ce-CPZ-1, has a multifunctional role during the worms’ development. Journal of Biological Chemistry 279, 60356045. doi: 10.1074/jbc.M312346200.Google Scholar
Hishida, R., Ishihara, T., Kondo, K. and Katsura, I. (1996). hch-1, a gene required for normal hatching and normal migration of a neuroblast in C. elegans, encodes a protein related to TOLLOID and BMP-1. EMBO Journal 15, 41114122.CrossRefGoogle Scholar
Hong, X., Bouvier, J., Wong, M. M., Yamagata, G. Y. L. and McKerrow, J. H. (1993). Brugia pahangi: identification and characterisation of an aminopeptidase associated with larval moulting. Experimental Parasitology 76, 127133. doi: 10.1006/expr.1993.1015.Google Scholar
Hu, Y., Xiao, S. H. and Aroian, R. V. (2009). The new anthelmintic tribendimidine is an L-type (levamisole and pyrantel) nicotinic acetylcholine receptor agonist. PLoS Neglected Tropical Diseases 3, e499. doi: 10.1371/journal.pntd.0000499.Google Scholar
Kaminsky, R., Gauvry, N., Schorderet Weber, S., Skripsky, T., Bouvier, J., Wenger, A., Schroeder, F., Desaules, Y., Hotz, R., Goebel, T., Hosking, B. C., Pautrat, F., Wieland-Berghausen, S. and Ducray, P. (2008). Identification of the amino-acetonitrile derivative monepantel (AAD 1566) as a new anthelmintic drug development candidate. Parasitology Research 103, 931939. doi: 10.1007/s00436-008-1080-7.Google Scholar
Lustigman, S., McKerrow, J. H., Shah, K., Lui, J., Huima, T., Hough, M. and Brotman, B. (1996). Cloning of a cysteine protease required for the moulting of Onchocerca volvulus third stage larvae. Journal of Biological Chemistry 271, 3018130189. doi: 10.1074/jbc.271.47.30181.Google Scholar
Lustigman, S., Zhang, J., Liu, J., Oksov, Y. and Hashmi, S. (2004). RNA interference targeting cathepsin L and Z-like cysteine proteases of Onchocerca volvulus confirmed their essential function during L3 moulting. Molecular and Biochemical Parasitology 138, 165170. doi: 10.1016/j.molbiopara.2004.08.003.Google Scholar
McKeller, Q. A. and Jackson, F. (2004). Veterinary anthelmintics: old and new. Trends in Parasitology 20, 456461. doi: 10.1016/j.pt.2004.08.002.CrossRefGoogle Scholar
Möhrlen, F., Hutter, H. and Zwilling, R. (2003). The astacin protein family in Caenorhabditis elegans. European Journal of Biochemistry 270, 49094920. doi: 10.1046/j.1432-1033.2003.03891.x.Google Scholar
Möhrlen, F., Maniura, M., Plickert, G., Frohme, M. and Frank, U. (2006). Evolution of astacin-like metalloproteases in animals and their function in development. Evolution & Development 8, 223231. doi: 10.1111/j.1525-142X.2006.00092.x.Google Scholar
Nelson, F. K., Albert, P. S. and Riddle, D. L. (1983). Fine structure of the Caenorhabditis elegans secretory-excretory system. Journal of Ultrastructure Research 82, 156171. doi: 10.1016/S0022-5320(83)90050-3.CrossRefGoogle ScholarPubMed
Novelli, J., Ahmed, S. and Hodgkin, J. (2004). Gene interactions in Caenorhabditis elegans define DPY-31 as a candidate procollagen C-proteinase and SQT-3/ROL-4 as its predicted major target. Genetics 168, 12591273. doi: 10.1534/genetics.104.027953.Google Scholar
Page, A. P. and Winter, A. D. (2003). Enzymes involved in the biogenesis of the nematode cuticle. Advances in Parasitology 53, 85148. doi: 10.1016/S0065-308X(03)53003-2.Google Scholar
Page, A. P. and Johnstone, I. L. (2007). The cuticle. In WormBook (ed. The C. elegans Research Community), WormBook, doi: 10.1895/ wormbook.1.138.1.Google Scholar
Park, J. O., Pan, J., Möhrlen, F., Schupp, M. O., Johnsen, R., Baillie, D. L., Zapf, R., Moerman, D. G. and Hutter, H. (2010). Characterization of the astacin family of metalloproteases in C. elegans. BMC Developmental Biology 10, 14. doi: 10.1186/1471-213X-10-14.CrossRefGoogle ScholarPubMed
Rhoads, M. L., Fetterer, R. H. and Urban, J. F. (1997). Secretion of an aminopeptidase during transition of third- to fourth-stage larvae of Ascaris suum. Journal of Parasitology 83, 780784. doi: 10.2307/3284267.CrossRefGoogle ScholarPubMed
Rhoads, M. L., Fetterer, R. H. and Urban, J. F. (1998). Effect of protease class-specific inhibitors on in vitro development of the third- to fourth-stage larvae of Ascaris suum. Journal of Parasitology 84, 686690. doi: 10.2307/3284570.Google Scholar
Richer, J. K., Sakanari, J. A., Frank, G. R. and Grieve, R. B. (1992). Dirofilaria immitis: proteases produced by third- and fourth-stage larvae. Experimental Parasitology 75, 213222. doi: 10.1016/0014-4894(92)90181-9.Google Scholar
Schwede, T., Kopp, J., Guex, N. and Peitsch, M. C. (2003). SWISS-MODEL: an automated protein homology-modelling server. Nucleic Acids Research 31, 33813385. doi: 10.1093/nar/gkg520.CrossRefGoogle Scholar
Singh, R. N. and Sulston, J. E. (1978). Some observations on moulting in Caenorhabditis elegans. Nematologica 24, 6371.Google Scholar
Stepek, G., McCormack, G. and Page, A. P. (2010 a). The kunitz domain protein BLI-5 plays a functionally conserved role in cuticle formation in a diverse range of nematodes. Molecular and Biochemical Parasitology 169, 111 doi:10.1016/j.molbiopara.2009.08.005.Google Scholar
Stepek, G., McCormack, G. and Page, A. P. (2010 b). Collagen processing and cuticle formation is catalysed by the astacin metalloprotease DPY-31 in free-living and parasitic nematodes. International Journal for Parasitology 40, 533542. doi: 10.1016/j.ijpara.2009.10.007.Google Scholar
Stöcker, W., Gomis-Rüth, F.-X., Bode, W. and Zwilling, R. (1993). Implications of the three-dimensional structure of astacin for the structure and function of the astacin family of zinc-endopeptidases. European Journal of Biochemistry 214, 215231. doi: 10.1111/j.1432-1033.1993.tb17915.x.Google Scholar
Stöcker, W. and Zwilling, R. (1995). Astacin. Methods in Enzymology 248, 305325. doi: 10.1016/0076-6879(95)48021-8.CrossRefGoogle ScholarPubMed
Studier, F. W. (2005). Protein production by auto-induction in high-density shaking cultures. Protein Expression and Purification 41, 207234. doi: 10.1016/j.pep.2005.01.016.CrossRefGoogle ScholarPubMed
Suzuki, M., Sagoh, N., Iwasaki, H., Inoue, H. and Takahashi, K. (2004). Metalloproteases with EGF, CUB, and thrombospondin-1 domains function in molting of Caenorhabditis elegans. Biological Chemistry 385, 565568. doi: 10.1515/BC.2004.069.Google Scholar
Williamson, A. L., Lustigman, S., Oksov, Y., Deumic, V., Plieskatt, J., Mendez, S., Zhan, B., Bottazzi, M. E., Hotez, P. J. and Loukas, A. (2006). Ancylostoma caninum MTP-1, an astacin-like metalloprotease secreted by infective hookworm larvae, is involved in tissue migration. Infection and Immunity 74, 961967. doi: 10.1128/IAI.74.2.961-967.2006.CrossRefGoogle ScholarPubMed
Williamson, S. M., Walsh, T. K. and Wolstenholme, A. J. (2007). The cys-loop ligand-gated ion channel gene family of Brugia malayi and Trichinella spiralis: a comparison with Caenorhabditis elegans. Invertebrate Neuroscience 7, 219226. doi: 10.1007/s10158-007-0056-0.Google Scholar
Xiao, S. H., Hui-Ming, W., Tanner, M., Utzinger, J. and Chong, W. (2005). Tribendimidine: a promising, safe and broad-spectrum anthelmintic agent from China. Acta Tropica 94, 114. doi: 10.1016/j.actatropica.2005.01.013.Google Scholar