Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T01:05:47.472Z Has data issue: false hasContentIssue false

Arg-substituted VmCT1 analogs reveals promising candidate for the development of new antichagasic agent

Published online by Cambridge University Press:  02 October 2020

Cibele Nicolaski Pedron
Affiliation:
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210580, SP, Brazil Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04044020, SP, Brazil
Katielle Albuquerque Freire
Affiliation:
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210580, SP, Brazil
Marcelo Der Torossian Torres
Affiliation:
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210580, SP, Brazil
Dânya Bandeira Lima
Affiliation:
Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Ceará, Fortaleza, 60430372, CE, Brazil
Marília Lopes Monteiro
Affiliation:
Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Ceará, Fortaleza, 60430372, CE, Brazil
Ramon Róseo Paula Pessoa Bezerra de Menezes
Affiliation:
Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Ceará, Fortaleza, 60430372, CE, Brazil
Alice Maria Costa Martins
Affiliation:
Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Ceará, Fortaleza, 60430372, CE, Brazil
Vani Xavier Oliveira Junior*
Affiliation:
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210580, SP, Brazil Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04044020, SP, Brazil
*
Author for correspondence: Vani Xavier de Oliveira Junior, E-mail: [email protected]

Abstract

VmCT1 is an antimicrobial peptide (AMP) isolated from the venom of the scorpion Vaejovis mexicanus with antimicrobial, anticancer and antimalarial activities, which the rational design with Arg-substitution has yielded AMPs with higher antimicrobial activity than VmCT1. Chagas is a neglected tropical disease, becoming the development of new antichagasic agents is urgent. Thus, we aimed to evaluate the antichagasic effect of VmCT1 and three Arg-substituted analogues, as well their action mechanism. Peptides were tested against the epimastigote, trypomastigote, amastigote forms of Trypanossoma cruzi Y strain and against LLC-MK2 mammalian cells. The mechanism of action of these peptides was evaluated by means of flow cytometry and scanning electron microscopy. VmCT1 presented activity against all three forms of T. cruzi, with EC50 against trypomastigote forms of 1.37 μmol L−1 and selectivity index (SI) of 58. [Arg]3-VmCT1, [Arg]7-VmCT1 and [Arg]11-VmCT1 also showed trypanocidal effect, but [Arg]11-VmCT1 had the best effect, being able to decrease the EC50 against trypomastigote forms to 0.8 μmol L−1 and increase SI to 175. Necrosis was cell death pathway of VmCT1, as well [Arg]7-VmCT1 and [Arg]11-VmCT1, such as observed by membrane damage in flow cytometry analyses and scanning-electron-microscopy. In conclusion, [Arg]11-VmCT1 revealed promising as a candidate for new antichagasic therapeutics.

Type
Research Article
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA.

References

Adade, CM, Carvalho, ALOLO, Tomaz, MA, Costa, TFR, Godinho, JL, Melo, PA, Lima, APCA, Rodrigues, JCF, Zingali, RB, Souto-Padrón, T and Souto-Padron, T (2014) Crovirin, a snake venom cysteine-rich secretory protein (CRISP) with promising activity against trypanosomes and leishmania. PLoS Neglected Tropical Diseases 8, e3252.CrossRefGoogle ScholarPubMed
Amorim-Carmo, B, Daniele-Silva, A, Parente, AMS, Furtado, AA, Carvalho, E, Oliveira, JWF, Santos, ECG, Silva, MS, Silva, SRB, Silva-Júnior, AA, Monteiro, NK and Fernandes-Pedrosa, MF (2019) Potent and broad-Spectrum antimicrobial activity of analogs from the scorpion peptide stigmurin. International Journal of Molecular Sciences 20, 623.CrossRefGoogle ScholarPubMed
Armstrong, CT, Mason, PE, Anderson, JLR and Dempsey, CE (2016) Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels. Scientific Reports 6, 110.CrossRefGoogle ScholarPubMed
Bandeira, ICJ, Bandeira-Lima, D, Mello, CP, Pereira, TP, De Menezes, RRPPB, Sampaio, TL, Falcão, CB, Rádis-Baptista, G and Martins, AMC (2018) Antichagasic effect of crotalicidin, a cathelicidin-like vipericidin, found in crotalus durissus terrificus rattlesnake's venom gland. Parasitology 145, 10591064.CrossRefGoogle ScholarPubMed
Campos, MC, Phelan, J, Francisco, AF, Taylor, MC, Lewis, MD, Pain, A, Clark, TG and Kelly, JM (2017) Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole. Scientific Reports 7, 14407.CrossRefGoogle ScholarPubMed
de la Fuente-Nunez, C, Torres, MD, Mojica, FJ and Lu, TK (2017) Next-generation Precision Antimicrobials: Towards Personalized Treatment of Infectious Diseases. UK: Elsevier Ltd. doi: 10.1016/j.mib.2017.05.014.Google ScholarPubMed
Fratini, F, Cilia, G, Turchi, B and Felicioli, A (2017) Insects, arachnids and centipedes venom: a powerful weapon against bacteria. A literature review. Toxicon 130, 91103.CrossRefGoogle ScholarPubMed
Freire, KA, Torres, MDT, Lima, DB, Monteiro, ML, de Menezes, RRPPB, Martins, AMC and Oliveira, VX (2020) Wasp venom peptide as a new antichagasic agent. Toxicon 181, 7178.CrossRefGoogle ScholarPubMed
Gautier, R, Douguet, D, Antonny, B and Drin, G (2008) HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics (Oxford, England) 24, 21012102.CrossRefGoogle ScholarPubMed
Giovati, L, Ciociola, T, Magliani, W and Conti, S (2018) Antimicrobial peptides with antiprotozoal activity: current state and future perspectives. Future Medicinal Chemistry 10, 25692572.CrossRefGoogle ScholarPubMed
Lacerda, AF, Pelegrini, PB, De Oliveira, DM, Vasconcelos, ÉAR and Grossi-de-Sá, MF (2016) Anti-parasitic peptides from arthropods and their application in drug therapy. Frontiers in Microbiology 7, 111.CrossRefGoogle ScholarPubMed
Lidani, KCF, Andrade, FA, Bavia, L, Damasceno, FS, Beltrame, MH, Messias-Reason, IJ and Sandri, TL (2019) Chagas disease: from discovery to a worldwide health problem. Journal of Physical Oceanography 49, 166. doi: 10.3389/fpubh.2019.00166Google Scholar
Lima, DBDB, Sousa, PL, Torres, AFCAFC, Rodrigues, KADFKAdaF, Mello, CPCP, Menezes, RRPPBDRRPPBdeRRPPBD, Tessarolo, LDLDLD, Quinet, YPYPYP, de Oliveira, MR and Martins, AMCAMCAMC (2016) Antiparasitic effect of Dinoponera quadriceps giant ant venom. Toxicon 120, 128132.CrossRefGoogle ScholarPubMed
Lima, DB, Mello, CP, Bandeira, ICJ, De Menezes, RRPPB, Sampaio, TL, Falcão, CB, Morlighem, J-ÉÉRL, Rádis-Baptista, G and Martins, AMC (2018) The dinoponeratoxin peptides from the giant ant Dinoponera quadriceps display in vitro antitrypanosomal activity. Biological Chemistry 399, 187196.CrossRefGoogle ScholarPubMed
Lohner, K (2017) Membrane-active antimicrobial peptides as template structures for novel antibiotic agents. Current Topics in Medicinal Chemistry 17, 508519.CrossRefGoogle ScholarPubMed
Meira, CS, Guimarães, ET, Dos Santos, JAF, Moreira, DRM, Nogueira, RC, Tomassini, TCB, Ribeiro, IM, de Souza, CVC, Ribeiro Dos Santos, R and Soares, MBP (2015) In vitro and in vivo antiparasitic activity of Physalis angulata L. concentrated ethanolic extract against trypanosoma cruzi. Phytomedicine: international journal of phytotherapy and phytopharmacology 22, 969974.CrossRefGoogle ScholarPubMed
Mello, CPCP, Lima, DBDB, Menezes, RRPPBdeRRPPBD, Bandeira, ICJICJ, Tessarolo, LDLD, Sampaio, TLTL, Falcão, CBCB, Rádis-Baptista, G and Martins, AMCAMC (2017) Evaluation of the antichagasic activity of batroxicidin, a cathelicidin-related antimicrobial peptide found in bothrops atrox venom gland. Toxicon 130, 5662.CrossRefGoogle ScholarPubMed
Menna-Barreto, RFS (2019) Cell death pathways in pathogenic trypanosomatids: lessons of (over)kill. Cell Death and Disease 10. doi: doi: 10.1038/s41419-019-1370-2.CrossRefGoogle ScholarPubMed
Morilla, MJ and Romero, EL (2015) Nanomedicines against Chagas disease: an update on therapeutics, prophylaxis and diagnosis. Nanomedicine: Nanotechnology, Biology, and Medicine 10, 465481.CrossRefGoogle ScholarPubMed
Nwaka, S and Hudson, A (2006) Innovative lead discovery strategies for tropical diseases. Nature Reviews Drug Discovery 5, 941955.CrossRefGoogle ScholarPubMed
Ortiz, E, Gurrola, GB, Schwartz, EF and Possani, LD (2015) Scorpion venom components as potential candidates for drug development. Toxicon 93, 125135.CrossRefGoogle ScholarPubMed
Pedron, CN, Torres, MDT, Lima, JAdaS, Silva, PI, Silva, FD and Oliveira, VX (2017) Novel designed VmCT1 analogs with increased antimicrobial activity. European Journal of Medicinal Chemistry 126, 456463.CrossRefGoogle ScholarPubMed
Pedron, CN, Araújo, I, da Silva Junior, PI, da Silva, D, Torres, F, T, MD and Oliveira Junior, VX (2019) Repurposing the scorpion venom peptide VmCT1 into an active peptide against gram-negative ESKAPE pathogens. Bioorganic Chemistry 90, 103038.CrossRefGoogle ScholarPubMed
Pérez-Molina, JA and Molina, I (2018) Chagas disease. The Lancet 391, 8294.CrossRefGoogle ScholarPubMed
Ramírez-Carreto, S, Quintero-Hernández, V, Jiménez-Vargas, JM, Corzo, G, Possani, LD, Becerril, B and Ortiz, E (2012) Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae. Peptides 34, 290295.CrossRefGoogle ScholarPubMed
Rodrigues, JHdaS, Ueda-Nakamura, T, Corrêa, AG, Sangi, DP and Nakamura, CV (2014) A quinoxaline derivative as a potent chemotherapeutic agent, alone or in combination with Benznidazole, against Trypanosoma cruzi. PLoS ONE 9, e85706.CrossRefGoogle ScholarPubMed
Sabiá Júnior, EF, Menezes, LFS, de Araújo, IFS and and Schwartz, EF (2019) Natural occurrence in venomous arthropods of antimicrobial peptides active against protozoan parasites. Toxins 11, 563.CrossRefGoogle ScholarPubMed
Stutz, K, Müller, AT, Hiss, JA, Schneider, P, Blatter, M, Pfeiffer, B, Posselt, G, Kanfer, G, Kornmann, B, Wrede, P, Altmann, K-H, Wessler, S and Schneider, G (2017) Peptide–membrane interaction between targeting and Lysis. ACS Chemical Biology 12, 22542259.CrossRefGoogle ScholarPubMed
Torres, MDT, Pedron, CN, Araújo, I, Silva, PI, Silva, FD and Oliveira, VX (2017) Decoralin analogs with increased resistance to degradation and lower hemolytic activity. ChemistrySelect 2, 1823.CrossRefGoogle Scholar
Torres, MDT, Pedron, CN, Higashikuni, Y, Kramer, RM, Cardoso, MH, Oshiro, KGN, Franco, OL, Silva Junior, PI, Silva, FD, Oliveira Junior, VX, Lu, TK and de la Fuente-Nunez, C (2018) Structure-function-guided exploration of the antimicrobial peptide polybia-CP identifies activity determinants and generates synthetic therapeutic candidates. Communications Biology 1, 116.CrossRefGoogle ScholarPubMed
Torres, MDT, Sothiselvam, S, Lu, TK and de la Fuente-Nunez, C (2019) Peptide design principles for antimicrobial applications. Journal of Molecular Biology 431, 35473567.CrossRefGoogle ScholarPubMed
Urbina, JA and Docampo, R (2003) Specific chemotherapy of chagas disease: controversies and advances. Trends in parasitology 19, 495501.CrossRefGoogle ScholarPubMed
Vanden Berghe, T, Grootjans, S, Goossens, V, Dondelinger, Y, Krysko, DV, Takahashi, N and and Vandenabeele, P (2013) Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods (San Diego, Calif.) 61, 117129.CrossRefGoogle ScholarPubMed
Vinhote, JFCJFC, Lima, DBDB, Menezes, RRPPBDRRPPBde, Mello, CPCP, de Souza, BMBM, Havt, A, Palma, MSMS, Santos, RPDRPdos, Albuquerque, ELdeELD, Freire, VNVN and Martins, AMCAMC (2017) Trypanocidal activity of mastoparan from Polybia paulista wasp venom by interaction with TcGAPDH. Toxicon 137, 168172.CrossRefGoogle ScholarPubMed
WHO/TDR (2012). Disease Reference Group on Chagas Disease, Human African Trypanosomiasis and Leishmaniasis: WHO Technical Report Series (No. 975). Research Priorities for Chagas Disease, Human African Trypanosomiasis and Leishmaniasis Research Priorities for Chagas Disea. doi: ISSN 0512-3054.Google Scholar