Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T20:57:51.724Z Has data issue: false hasContentIssue false

Antiparasitic effect of calcium and magnesium ion-free buffer treatments against a common monogenean Neobenedenia girellae

Published online by Cambridge University Press:  11 October 2006

H. OHASHI
Affiliation:
Laboratory of Fish Reproductive Physiology, Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
N. UMEDA
Affiliation:
Marine Biological Technology Center, Nippon Suisan Kaisha, Ltd, Saiki, Oita 876-1204, Japan
N. HIRAZAWA
Affiliation:
Marine Biological Technology Center, Nippon Suisan Kaisha, Ltd, Saiki, Oita 876-1204, Japan
Y. OZAKI
Affiliation:
PRESTO Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
C. MIURA
Affiliation:
PRESTO Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
T. MIURA
Affiliation:
Laboratory of Fish Reproductive Physiology, Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan

Abstract

This study investigated a new effective method for controlling the capsalid monogenean Neobenedenia girellae. We examined in vitro and in vivo the effect on the percentage survival of N. girellae in buffers containing different metallic ions. Decreased survival was observed in buffer solutions lacking two ions. In particular, the percentage survival of N. girellae was significantly decreased after 10 min exposure to buffer containing neither Ca2+ nor Mg2+. Transmission electron microscopic observations showed that treatment with this buffer disrupted intercellular junctions. This significant effect on percentage survival of N. girellae using Ca2+/Mg2+-free buffer was confirmed in an in vivo assay. Ca2+/Mg2+-free buffer had no effect on the condition of the host, spotted halibut Verasper variegates (Pleuronectidae). These results suggest that treatment with Ca2+/Mg2+-free buffer is a new effective control method, which could replace existing control methods.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackerman, P. A., Forsyth, R. B., Mazur, C. F. and Iwama, G. K. ( 2000). Stress hormones and the cellular stress response in salmonids. Fish Physiology and Biochemistry 23, 327336.CrossRefGoogle Scholar
Brooks, D. R. and Mayes, M. A. ( 1975). Phyllodistomum scrippi sp. n. (Digenea: Gorgoderidae) and Neobenedenia girellae (Hargis, 1955) Ymaguti, 1963 (Monogenea: Capsalidae) from the California sheephead, Pimelometopon pulchrum (Ayres) (Pisces: Labridae). Journal of Parasitology 61, 407408.Google Scholar
Crane, J. W. ( 1972). Systematics and new species of marine Monogenea from California. Wassmann Journal of Biology 30, 109166.Google Scholar
Gaida, I. H. and Frost, P. ( 1991). Intensity of Neobenedenia girellae (Monogenea: Capsalidae) on the halfmoon, Medialuna californiensis (Perciformers: Kyphosidae), examined using a new method for detection. Journal of the Helminthological Society of Washington 58, 129130.Google Scholar
Ghersi, G. and Vittorelli, M. L. ( 1990). Immunological evidence for the presence in sea urchin embryos of a cell adhesion protein similar to mouse uvomorulin (E-cadherin). Cell Differentiation and Development 31, 6775.CrossRefGoogle Scholar
Goldberg, I. L., Millar, R. and Sanchez, S. ( 1991). The ontogenic acquisition of infestation of the trematode ectoparasite Neobenedenia girellae on the marine teleost Girella nigricans. Bulletin of the Southern California Academy of Sciences 90, 8385.Google Scholar
Hill, E., Broadbent, I. D., Chothia, C. and Pettitt, J. ( 2001). Cadherin superfamily proteins in Caenorhabditis elegans and Drosophila melanogaster. Journal of Molecular Biolology 305, 10111024.CrossRefGoogle Scholar
Hirazawa, N., Mitsuboshi, T., Hirata, T. and Shirasu, K. ( 2004). Susceptibility of spotted halibut Verasper variegates (Pleuronectidae) to infection by the monogenean Neobenedenia girellae (Capsalidae) and oral therapy trials using praziquantel. Aquaculture 238, 8395.CrossRefGoogle Scholar
Hirazawa, N., Ohtaka, T. and Hata, K. ( 2000). Challenge trials on the anthelmintic effect of drugs and natural agents against the monogenean Heterobothrium okamotoi in the tiger puffer Takifugu rubripes. Aquaculture 188, 113.CrossRefGoogle Scholar
Howe, G. E., Marking, L. and Schreier, T. ( 1995). Efficacy and toxicity of formalin solutions containing paraformaldehyde for fish and egg treatments. The Progressive Fish Culturist 57, 147152.2.3.CO;2>CrossRefGoogle Scholar
Inuzuka, H., Miyatani, S. and Takeichi, M. ( 1991). R-cadherin: a novel Ca2+-dependent cell-cell adhesion molecule expressed in the retina. Neuron 7, 6979.CrossRefGoogle Scholar
Kaneko, J. J., Yamada, R., Brock, J. A. and Nakamura, R. M. ( 1988). Infection of tilapia, Oreochromis mossambicus (Trewavas), by a marine monogenean, Neobenedenia melleni (MacCallum, 1927) Yamaguchi, 1963 in Kaneohe Bay, Hawaii, USA, and its treatment. Journal of Fish Diseases 11, 295300.Google Scholar
Kim, K. H. and Choi, E. H. ( 1998). Treatment of Microcotyle sebastis (Monogenea) on the gills of cultured rockfish (Sebastes schelegeli) with oral administration of mebendazole and bithionol. Aquaculture 167, 115121.CrossRefGoogle Scholar
Kim, K. H., Lee, E. H., Kwon, S. R. and Cho, J. B. ( 2001). Treatment of Microcotyle sebastis infestation in cultured rockfish Sebastes schlegeli by oral administration of praziquantel in combination with cimetidine. Diseases of Aquatic Organisms 44, 133136.CrossRefGoogle Scholar
Lagunowich, L. A., Donoso, L. A. and Grunwald, G. B. ( 1990). Identification of mammalian and invertebrate analogues of the avian calcium-dependent cell adhesion protein N-cadherin with synthetic-peptide directed antibodies against a conserved cytoplasmic domain. Biochemical and Biophysical Research Communications 172, 313320.CrossRefGoogle Scholar
Leong, T. S. and Colorni, A. ( 2002). Infectious diseases of warm water fish in marine and brackish waters. In Diseases and Disorders of Finfish in Cage Culture (ed. Woo, P. T. K., Bruno, D. W and Lim, L. H. S.), pp. 193230. CABI Publishing, London.
McHenery, J. G., Saward, D. and Seaton, D. D. ( 1991). Lethal and sub-lethal effects of the salmon delousing agent dichlorvos on the larvae of the lobster (Homarus gammarus L.) and herring (Clupea harengus L.). Aquaculture 98, 331347.Google Scholar
Oda, H., Uemura, T., Harada, Y., Iwai, Y. and Takeichi, M. ( 1994). A Drosophila homolog of cadherin associated with armadillo and essential for embryonic cell-cell adhesion. Developmental Biolology 165, 716726.CrossRefGoogle Scholar
Ogawa, K. ( 1998). Egg hatching of the monogenean Heterobothrium okamotoi, a gill parasite of cultured tiger puffer (Takifugu rubripes), with a description of its oncomiracidium. Fish Pathology 33, 2530.CrossRefGoogle Scholar
Ogawa, K., Bondad-Reantaso, M. G., Fukudome, M. and Wakabayashi, H. ( 1995). Neobenedenia girellae (Hargis, 1955) Yamaguti, 1963 (Monogenea: Capsalidae) from cultured marine fishes of Japan. Journal of Parasitology 81, 223227.CrossRefGoogle Scholar
Ogawa, K. and Yokoyama, H. ( 1998). Parasitic diseases of cultured marine fish in Japan. Fish Pathology 33, 303309.CrossRefGoogle Scholar
Okabe, K. ( 2000). Chemotherapeutic drug (Hada-clean) of oral administrating type to control fish parasites. Doyaku Kenkyu. 60, 112 (in Japanese).Google Scholar
Paperna, I. ( 1991). Diseases caused by parasites in the aquaculture of warm water fish. Annual Review of Fish diseases 1, 155194.CrossRefGoogle Scholar
Pickering, A. D. ( 1998). Stress responses of farmed fish. In Biology of Farmed Fish ( ed. Black, K. D. and Pickering, A. D.), pp. 222255. Sheffield Academic Press, Sheffield.
Roberts, S. D. and Powell, M. D. ( 2003 a). Comparative ionic flux and gill mucous cell histochemistry: effect of salinity and disease status in Atlantic salmon (Salmo salar L.). Comparative Biochemistry and Physiology 134(A), 525537.Google Scholar
Roberts, S. D. and Powell, M. D. ( 2003 b). Reduced total hardness of fresh water enhances the efficacy of bathing as a treatment for amoebic gill disease in Atlantic salmon, Salmo salar L. Journal of Fish Diseases 26, 591599.Google Scholar
Schmahl, G. and Taraschewski, H. ( 1987). Treatment of fish parasites. 2. Effects of praziquantel, niclosamide, levamisole-HCl, and metrifonate on Monogenea (Gyrodactylus aculeati, Diplozoon paradoxum). Parasitology Research 73, 341351.CrossRefGoogle Scholar
Takeichi, M. and Okada, T. S. ( 1972). Roles of magnesium and calcium ions in cell-to-substrate adhesion. Experimental Cell Resarch 74, 5160.CrossRefGoogle Scholar
Thoney, D. A. and Hargis, W. J. ( 1991). Monogenea (Platyhelminthes) as hazards for fish in confinement. Annual Review of Fish Diseases 1, 133153.CrossRefGoogle Scholar
Umeda, N. and Hirazawa, N. ( 2004). Response of the monogenean Neobenedenia girellae to low salinities. Fish Pathology 39, 105107.CrossRefGoogle Scholar
Wong, E. F., Brar, S. K., Sesaki, H., Yang, C. and Siu, C. H. ( 1996). Molecular cloning and characterization of DdCAD-1, a Ca2+1-dependent cell-cell adhesion molecule, in Dictyostelium discoideum. Journal of Biological Chemistry 271, 1639916408.CrossRefGoogle Scholar
Wood, C. M., Turner, J. D. and Graham, M. S. ( 1983). Why do fish die after severe exercise? Journal of Fish Biology 22, 189201.Google Scholar
Yoshinaga, T., Segawa, I., Kamaishi, T. and Sorimachi, M. ( 2000). Effects of temperature, salinity and chlorine treatment on egg hatching of the monogenean Neoheterobothrium hirame infecting Japanese flounder. Fish Pathology 35, 8588.CrossRefGoogle Scholar