Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T16:45:18.308Z Has data issue: false hasContentIssue false

Antigenic variation in clones of animal-infective Trypanosoma brucei derived and maintained in vitro

Published online by Cambridge University Press:  06 April 2009

J. J. Doyle
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya and Medical Research Council, Biochemical Parasitology Unit, Molteno Institute, Downing Street, Cambridge, CB2 3EE
H. Hirumi
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya and Medical Research Council, Biochemical Parasitology Unit, Molteno Institute, Downing Street, Cambridge, CB2 3EE
K. Hirumi
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya and Medical Research Council, Biochemical Parasitology Unit, Molteno Institute, Downing Street, Cambridge, CB2 3EE
E. N. Lupton
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya and Medical Research Council, Biochemical Parasitology Unit, Molteno Institute, Downing Street, Cambridge, CB2 3EE
G. A. M. Cross
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya and Medical Research Council, Biochemical Parasitology Unit, Molteno Institute, Downing Street, Cambridge, CB2 3EE

Summary

Eighteen clones of variable antigen type 052 of Trypanosoma brucei stock S. 427 were derived and maintained as animal-infective bloodstream forms in vitro for up to 60 days of cultivation. The antigenic composition of such clones was monitored weekly by immunofluorescent analysis of viable trypanosomes, using antisera raised to isolated variant-specific surface glycoproteins of both 052 and a variable antigen type (221) which consistently appeared in the first relapse population of type 052 in vitro. The appearance of new variants was detected in 9 of the 18 clones 18–46 days following initiation of the clone and variable antigen type 221 was found in all 9 clones. On one or more occasions in 8 of such clones, viable trypanosomes were found which did not react with either antiserum but were mouse-infective on the 4 occasions tested and probably represent other variable antigen types. The process of antigen, variation in vitro appears to resemble the process in vivo except that new variant types are detected earlier in vivo. This possibly results from different growth rates of the trypanosomes in vivo and in vitro, together with the fact that elimination of the initial variant population by the host's immune response facilitates the detection of newly arising variable antigen types in vivo.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbet, A. F. & McGuire, T. C. (1978). Cross-reacting determinants in variant-specific surface antigens of African trypanosomes. Proceedings of the National Academy of Sciences USA 75, 1989–93.Google Scholar
Beale, G. H. (1954). The Genetics of Paramecium aurelia. Cambridge University Press.Google Scholar
Brandtzaeg, P. (1973). Conjugates of immunoglobin G with different fluorochromes. I. Characterisation by anionic-exchange chromatography. Scandinavian Journal of Immunology 2, 273–90.Google Scholar
Clark, H. F. & Shepard, C. C. (1963). A dialysis technique for preparing fluorescent antibody. Virology 20, 642–4.CrossRefGoogle ScholarPubMed
Cross, G. A. M. (1975). Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71, 393417.Google Scholar
Cross, G. A. M. (1978). Antigenic variation in trypanosomes. Proceedings of the Royal Society of London B 202, 5572.Google ScholarPubMed
Cross, G. A. M. & Manning, J. C. (1973). Cultivation of Trypanosoma brucei sspp. in semi-defined and defined media. Parasitology 67, 315–31.CrossRefGoogle ScholarPubMed
Doyle, J. J. (1977). Antigenic variation in the salivarian trypanosomes. In Immunity to Blood Parasites of Animals and Man (ed. Miller, L. H., Pino, J. A. and McKelvey, J. Jr), pp. 3163. New York and London: Plenum Press.Google Scholar
Doyle, J. J., Behin, R., Mauel, J. & Rowe, D. S. (1974). Antibody-induced movement of membrane components of Leishmania enriettii. Journal of Experimental Medicine 139, 1061–9.CrossRefGoogle ScholarPubMed
Ehrlich, P. (1909). Ueber Partialfunktionem der Zelle. Münchener medizinische Wochenschrift 56, 217–22.Google Scholar
Ehrlich, P., Roehl, W. & Gulblausen, R. (1908).Ueber serumfeste Trypanosomenstaemme. Zeitschrift für Immunitätsforschung und experimentelle Therapie 3, 296–9.Google Scholar
Gilbert, W. (1978). Why genes in pieces? Nature, London 271, 501.CrossRefGoogle ScholarPubMed
Goedbloed, E. (1971). Trypanosoma rhodesiense: antigenic stability in emhryonated chicken eggs. Experimental Parasitology 30, 257–9.CrossRefGoogle ScholarPubMed
Gray, A. R. & Luckins, A. G. (1976). Antigenic variation in salivarian trypanosomes. In Biology of the Kinetoplastida, vol. 1 (ed. Lumsden, W. H. R. and Evans, D. A.), pp. 493542. London, New York and San Francisco: Academic Press.Google Scholar
Hirumi, H., Doyle, J. J. & Hirumi, K. (1977 a). African trypanosomes: cultivation of animal-infective Trypanosoma brucei in vitro. Science 196, 992–4.Google Scholar
Hirumi, H., Doyle, J. J. & Hirumi, K. (1977 b). Cultivation of bloodstream Trypanosoma brucei. Bulletin of the World Health Organization 55, 405–9.Google Scholar
Hirumi, H., Hirumi, K. & Doyle, J. J. (1978). Cloning of African trypanosomes in the presence of bovine fibroblast-like cells. In vitro 14, 379.Google Scholar
Hirumi, H., Hirumi, K., Doyle, J. J. & Cross, G. A. M. (1980). in vitro cloning of animal-infective bloodstream forms of Trypanosoma brucei. Parasitology 80, 371382.CrossRefGoogle ScholarPubMed
Horant, P. K. & Wheeless, L. L. (1977). Quantitative single cell analysis and sorting. Science 198, 149–57.CrossRefGoogle Scholar
Levaditi, C. & McIntosh, J. (1909). Le mécanisme de la création des variétes de trypanosomes resistants aux anticorps. Comptes Rendus de la Société Biologique 66, 4951.Google Scholar
McReynolds, L., O'Malley, B. W., Nisbet, A. D., Fothergill, J. E., Givol, D., Fields, S., Robertson, M. & Brownless, G. G. (1978). Sequence of chicken ovalbumin mRNA. Nature, London 273, 723–8.CrossRefGoogle ScholarPubMed
Pollock, T. J.Tessmann, I. & Tessman, E. (1978). Potential for variability through multiple gene products of bacteriophage Φ × 174. Nature, London 274, 34–7.Google Scholar
Soltys, M. A. (1957 a). Immunity in trypanosomiasis. I. Neutralisation reaction. Parasitology 47, 375–89.Google Scholar
Soltys, M. A. (1957 b). Immunity in trypanosomiasis. II. Agglutination reaction with African trypanosomes. Parasitology 47, 390–5.Google Scholar
Sommerville, J. (1970). Serotype expression in Paramecium. Advances in Microbial Physiology 4, 131–78.Google Scholar
Taylor, A. E. R., Lanham, S. M. & Williams, J. E. (1974). Influence of methods of preparation on the infectivity, agglutination, activity and ultrastructure of bloodstream trypanosomes. Experimental Parasitology 35, 196208.Google Scholar
Vickerman, K. (1978). Antigenic variation in trypanosomes. Nature, London 273, 613–17.CrossRefGoogle ScholarPubMed