Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T07:51:31.507Z Has data issue: false hasContentIssue false

Analysis of the transmission of Trypanosoma cruzi infection through hosts and vectors

Published online by Cambridge University Press:  04 April 2016

MARÍA C. FABRIZIO*
Affiliation:
Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Av San Martín 4453, C1417DSE, Buenos Aires, Argentina
NICOLÁS J. SCHWEIGMANN
Affiliation:
Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, IEGEBA (CONICET), C1428EHA, Buenos Aires, Argentina
NORBERTO J. BARTOLONI
Affiliation:
Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Av San Martín 4453, C1417DSE, Buenos Aires, Argentina
*
*Corresponding author: Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Av San Martín 4453, C1417DSE, Buenos Aires, Argentina. Tel: +54-11-4524-8077. Fax: +54-11-4514-8737. E-mail: [email protected]

Summary

Calculating epidemiological measures of infection by Trypanosoma cruzi, the causative agent of Chagas disease, is complex, because it involves several species, different stages of infection in humans and multiple transmission routes. Using the next-generation matrix method, we analysed a model which considers the three stages of human infection, triatomines and dogs (the main domestic reservoirs of T. cruzi when triatomines are present) and the main transmission routes. We derived R0 and type-reproduction numbers T. We deduced formulas for the number of new infections generated through each transmission route by each infected individual. We applied our findings in Argentine Gran Chaco. The expressions achieved allowed quantifying the high infectivity of dogs and emphasizing the epidemiological importance of the long and asymptomatic chronic indeterminate stage in humans in the spread of the infection. According to the model, it is expected that one infected human infects 21 triatomines, that 100 infected triatomines are necessary to infect one human and 34 to infect a dog, and that each dog infects on average one triatomine per day. Our results may allow quantifying the effect of control measures on infected humans, triatomines and dogs (or other highly infected vertebrate) or on a specific route of transmission, in other scenarios.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguilera-Venegas, B., Olea-Azar, C., Arán, V. and Speisky, H. (2013). Indazoles: a new top seed structure in the search of efficient drugs against Trypanosoma cruzi . Future Medicinal Chemistry 5, 18431859.Google Scholar
Anderson, R. M. and May, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford, England.Google Scholar
Clauson, A., Harrison, A., Shuman, L., Shillor, M. and Spagnuolo, A. M. (2012). Analysis of the steady states of a mathematical model for Chagas disease. Involve 5, 237246.Google Scholar
Cohen, J. E. and Gürtler, R. E. (2001). Modeling household transmission of American Trypanosomiasis. Science 293, 694697.Google Scholar
Crisante, G., Rojas, A., Teixeira, M. M. and Añez, N. (2006). Infected dogs as a risk factor in the transmission of the human Trypanosoma cruzi in western Venezuela. Acta Tropica 98, 247254.Google Scholar
Diekmann, O. and Heesterbeek, J. A. P. (2000). Mathematical Epidemiology of Infectious Diseases. John Wiley, New York, USA.Google Scholar
Diekmann, O., Heesterbeek, J. A. P. and Metz, J. A. J. (1990). On the definition and computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology 28, 365382.Google Scholar
Diekmann, O., Heesterbeek, J. A. P. and Roberts, M. G. (2010). The construction of next generation matrices for compartmental epidemic models. Journal of the Royal Society Interface 7, 873885.CrossRefGoogle ScholarPubMed
Estrada-Franco, J. G., Bhatia, V., Diaz-Albiter, H., Ochoa-García, L., Barbosa, A., Vazquez-Chagoran, J. C., Martinez-Perez, M. A., Guzman-Bracho, C. and Garg, N. (2006). Human Trypanosoma cruzi infection and seropositivity in dogs, Mexico. Emerging Infectious Diseases 12, 624630.Google Scholar
Fabrizio, M. C., Schweigmann, N. J. and Bartoloni, N. J. (2014 a). Modelling American Trypanosomiasis in an endemic zone application to the initial spread of household infection in the Argentine Chaco. Zoonoses and Public Health 61, 545559.CrossRefGoogle Scholar
Fabrizio, M. C., Schweigmann, N. J. and Bartoloni, N. J. (2014 b). Modeling inter-human transmission dynamics of Chagas disease: analysis and application. Parasitology 141, 837848.CrossRefGoogle ScholarPubMed
Garcia-Bournissen, F., Altcheh, J., Giglio, N., Mastrontonio, G., Della Vedova, C. O. and Koren, G. (2009). Pediatric clinical pharmacology studies in chagas disease: focus on Argentina. Paediatric Drugs 11, 3337.Google Scholar
Gurevitz, J. M., Gaspe, M. S., Enríquez, G. F., Vassena, C. V., Alvarado-Otegui, J. A., Provecho, Y. M., Cueto, G. A., Picollo, M. I., Kitron, U. and Gürtler, R. E. (2012). Unexpected failures to control Chagas disease vectors with pyrethroid spraying in northern Argentina. Journal of Medical Entomology 49, 13791386.Google Scholar
Gürtler, R. E., Kravetz, F. O., Petersen, R., Lauricella, M. A. and Wisnivesky-Colli, C. (1990). The prevalence of Trypanosoma cruzi and the demography of dog populations after insecticidal sparring of houses: a prediction model. Annals of Tropical Medicine and Parasitology 84, 313323.CrossRefGoogle Scholar
Gürtler, R. E., Cecere, M. C., Vazquez, D. F., Chuit, R. and Cohen, J. E. (1996). Host-feeding patterns of domiciliary Triatoma infestans (Hemiptera: Reduviidae) in northwest Argentina: seasonal and instar variation. Journal of Medical Entomology 33, 526.Google Scholar
Gürtler, R. E., Cohen, J. E., Cecere, M. C. and Chuit, R. (1997). Shifting host choices of the vector of Chagas disease Triatoma infestans in relation to the availability of hosts in houses in northwest Argentina. Journal of Applied Ecology 34, 699715.Google Scholar
Gürtler, R. E., Kitron, U., Cecere, M. C., Segura, E. L. and Cohen, J. E. (2007). Sustainable vector control and management of Chagas disease in the Gran Chaco, Argentina. Proceedings of the National Academy of Sciences of the United States of America 104, 1619416199.Google Scholar
Hartemink, N. A., Randolph, S. E., Davis, S. A. and Heesterbeek, J. A. P. (2008). The basic reproduction number for complex disease systems: defining R 0 for Tick-Borne Infections. American Naturalist 171, 743754.Google Scholar
Heesterbeek, J. A. P. and Dietz, K. (1996). The concept of R 0 in epidemic theory. Statatistica Neerlandica. 50, 89110.CrossRefGoogle Scholar
Heesterbeek, J. A. P. and Roberts, M. G. (2007). The type-reproduction number T in models for infectious disease control. Mathematical Biosciences 206, 310.Google Scholar
Heffernan, J. M., Smith, R. J. and Wahl, L. M. (2005). Perspectives on the basic reproductive ratio. Journal of the Royal Society Interface 2, 281293.Google Scholar
Hethcote, H. W. (2000). The mathematical of infectious diseases. SIAM Review 42, 599653.CrossRefGoogle Scholar
Howard, E. J., Xiong, X., Carlier, Y., Sosa-Estani, S. and Buekens, P. (2014). Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis. British Journal of Obstetrics and Gynaecology 121, 2233.Google Scholar
Inaba, H. and Sekine, H. (2004). A mathematical model for Chagas disease with infection-age- dependent infectivity. Mathematical Biosciences 190, 3969.CrossRefGoogle ScholarPubMed
Kealey, A. and Smith, R. (2010). Neglected tropical diseases: infection, modeling, and control. Journal of Health Care for the Poor and Underserved 21, 5369.Google Scholar
Médicos Sin Frontera (2005). Chagas: una tragedia silenciosa. (Ed. Losada). Buenos Aires, Argentina.Google Scholar
Montenesinos-López, O. A. and Hernández Suarez, C. M. (2007). Modelos matemáticos para enfermedades infecciosas. Salud Pública de México 49, 218225.Google Scholar
Muñoz, M. J., Murcia, L. and Segovia, M. (2011). The urgent need to develop new drugs and tools for treatment of Chagas disease. Expert Review of Anti-Infective Therapy 9, 57.Google Scholar
Peterson, A. T., Sánchez-Cordero, V., Beard, C. B. and Ramsey, J. (2002). Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico. Emerging Infectious Diseases 8, 662667.Google Scholar
Picollo, M. I., Vassena, C., Orihuela, P. S., Barrios, S., Zaidenberg, M. and Zerba, E. (2005). High resistence to pyrethroid insecticides associated with ineffective field treatments in Triatoma infestans (Hemiptera: Reduviidae) from Northern Argentina. Journal of Medical Entomology 42, 637642.Google Scholar
Rabinovich, J. E. and Himschoot, P. (1990). A population-dynamics simulation model of the main vectors of Chagas’ Disease transmission, Rhodnius prolixus and Triatoma infestans . Ecological Modelling 52, 249266.Google Scholar
Rabinovich, J. E., Wisnivesky-Colli, C., Solarz, N. D. and Gürtler, R. E. (1990). Probability of transmission of Chagas disease by Triatoma infestans (Hemiptera: Reduviidae) in an endemic area of Santiago del Estero, Argentina. Bulletin World Health Organization 68, 737746.Google Scholar
Roberts, M. G. (2008). The pluses and minuses of R 0 . Journal of the Royal Society Interface 4, 949961.Google Scholar
Roberts, M. G. and Heesterbeek, J. A. P. (2003). A new method for estimating the effort required to control an infectious disease. Proceedings of the Royal Society B: Biological Sciences 270, 13591364.Google Scholar
Schmunis, G. A. and Yadon, Z. E. (2010). Chagas disease: a Latin American health problem becoming a world health problem. Acta Tropica 115, 1421.Google Scholar
Sosa-Estani, S., Viotti, R. and Segura, E. L. (2009). Therapy, diagnosis and prognosis of chronic Chagas disease insight gained in Argentina. Memórias do Instituto Oswaldo Cruz 104, 167180.Google Scholar
Storino, R. (2010). Chagas en el Siglo XXI. De la enfermedad a la problemática social. Akadia Ed. Buenos Aires, Argentina.Google Scholar
Toloza, A., Germano, M., Cueto, G., Vassena, C., Zerba, E. and Picollo, M. (2008). Differential patterns of insecticide resistance in eggs and first instars of Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. Journal of Medical Entomology 45, 421426.Google Scholar
van den Driessche, P. and Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartimental models of disease transmission. Mathematical Biosciences 180, 2948.Google Scholar
World Health Organization (2015). Chagas Disease (American Trypanosomiasis) . Media Centre. Fact sheet No 340. Geneva, Switzerland. http://www.who.int/mediacentre/factsheets/fs340/es/ Google Scholar
Supplementary material: File

Fabrizio supplementary material

Fabrizio supplementary material 1

Download Fabrizio supplementary material(File)
File 173.1 KB