Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T17:01:45.682Z Has data issue: false hasContentIssue false

Analysis of the high molecular weight rhoptry complex of Plasmodium falciparum using monoclonal antibodies

Published online by Cambridge University Press:  06 April 2009

J.-C. Doury
Affiliation:
Unité de Biologie Parasitaire, Institut de Médecine Tropicale, Parc du Pharo, 13998 Marseille Armées, France
S. Bonnefoy
Affiliation:
Unité de Parasitologie expérimentale, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
N. Roger
Affiliation:
Unité 42 INSERM, 369 rue Jules Guesde, 59650 Villeneuve d'Ascq, France
J.-F. Dubremetz
Affiliation:
Unité de Parasitologie expérimentale, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
O. Mercereau-Puijalon
Affiliation:
Unité de Parasitologie expérimentale, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France

Summary

Twenty-one monoclonal antibodies, obtained after immunization of mice with erythrocytic stages of Plasmodium falciparum, produced a double dot image in IFA. Immunoelectronmicroscopy indicated that the mAbs reacted with the rhoptries. Rhoptries are pear-shaped apical organelles, believed to be involved in invasion of the host cell by the parasite. The mAbs all immunoprecipitated the high molecular weight antigen complex. Some mAbs recognized on immunoblots only 1 protein of this complex, whereas others reacted with RhopH1 and RhopH3, or RhopH2 and RhopH3 or with the 3 proteins. An additional antigen of 52 kDa was also recognized by some of the mAbs. The epitopes defined by the mAbs were present in most of the 40 P. falciparum strains or isolates studied by IFA. Interestingly, the mAbs also reacted with high titres on P. vivax and P. ovale, but produced images that did not indicate an apical location. The mAbs failed to react on the non-human malaria parasites studied, P. cynomolgi and P. inui. On P. berghei or P. chabaudi parasites, only 5 mAbs gave a positive reaction, labelling a large network outside the parasite. Finally, the mAbs did not react with P. falciparum sporozoites, indicating that the rhoptries of merozoites and sporozoites, the two invasive stages of the malaria life-cycle are equipped with distinct sets of proteins.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M., Miller, L. H., Johnson, J. & Rabbege, J. (1978). Erythrocyte entry by malarial parasites. Journal of Cell Biology 77, 7282.CrossRefGoogle ScholarPubMed
Aikawa, M., Miller, L. H., Rabbege, J. R. & Epstein, N. (1981). Freeze-fracture study on the erythrocyte membrane during malaria parasite invasion. Journal of Cell Biology 91, 5562.Google Scholar
Aley, S. B., Sherwood, J. A. & Howard, R. J. (1984). Knob-positive and knob-negative Plasmodium falciparum differ in expression of a strain-specific malarial antigen on the surface of infected erythrocytes. Journal of Experimental Medicine 160, 1585–90.Google Scholar
Bonnefoy, S., Mattei, D., Dubremetz, J.-F., Guillotte, M., Jouin, H., Ozaki, L. S., Sibilli, L. & Mercereaupuijalon, O. (1988). Plasmodium falciparum: Molecular analysis of a putative protective antigen, the thermostable 96-kDa protein. Experimental Parasitology 65, 6983.Google Scholar
Braun-Breton, C., Rosenberry, T. L. & Pereira Da Silva, L. (1988). Induction of the proteolytic activity of a membrane protein in Plasmodium falciparum by phosphatidyl inositol-specific phospholipase C. Nature, London 332, 457–9.Google Scholar
Braun-Breton, C., Blisnick, T., Jouin, H., Barale, J. C., Rabilloud, T., Langsley, G. & Pereira Da Silva, L. (1992). Plasmodium chabaudi p68 serine protease activity required for merozoite entry into mouse erythrocytes. Proceedings of the National Academy of Sciences, USA 89, 9647–51.CrossRefGoogle Scholar
Brown, H. J. & Coppel, R. L. (1991). Primary structure of a Plasmodium falciparum rhoptry antigen. Molecular and Biochemical Parasitology 49, 99110.Google Scholar
Bushell, G. R., Ingram, L. T., Faroulys, C. A. & Cooper, J. A. (1988). An antigenic complex in the rhoptries of Plasmodium falciparum. Molecular and Biochemical Parasitology 28, 105–12.CrossRefGoogle ScholarPubMed
Campbell, G. H., Miller, L. H., Hudson, D., Franco, E. L. & Andrysiak, P. M. (1984). Monoclonal antibody characterisation of Plasmodium falciparum antigens. American Journal of Tropical Medicine and Hygiene 33, 1051–4.Google Scholar
Camus, D. & Hadley, T. J. (1985). A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science 230, 553–6.Google Scholar
Carter, R. & Miller, L. H. (1979). Evidence for environmental modulation of gametocytogenesis in Plasmodium falciparum in continuous culture. Bulletin of the World Health Organization 57, (Suppl. 1), 3752.Google Scholar
Cerami, C., Frevert, U., Sinnis, P., Takacs, B., Clavijo, P., Santos, M. J. & Nussenzweig, V. (1992). The basolateral domain of the hepatocyte plasma membrane bears receptors for the circumsporozoite protein of Plasmodium falciparum sporozoites. Cell 70, 1021–33.CrossRefGoogle ScholarPubMed
Cooper, J. A., Atkins, A. & Saul, A. J. (1989). N-terminal acid sequencing of the 105 kilodalton rhoptry antigen of Plasmodium falciparum. Molecular and Biochemical Parasitology 33, 203–4.CrossRefGoogle ScholarPubMed
Cooper, J. A., Ingram, L. T., Bushell, G. R., Fardoulys, G. A., Stenzel, D., Schofield, L. & Saul, A. J. (1988). The 140/130/105 kilodalton soluble complex in the rhoptries of Plasmodium falciparum consists of discrete polypeptides. Molecular and Biochemical Parasitology 29, 251–60.Google Scholar
Coppel, R. S., Bianco, A. E., Culvenor, J. G., Crewther, P. E., Brown, G. V., Anders, R. F. & Kemp, D. J. (1987). A cDNA clone expressing a rhoptry protein of Plasmodium falciparum. Molecular and Biochemical Parasitology 25, 7381.CrossRefGoogle ScholarPubMed
Elford, B. C. & Ferguson, D. J. P. (1993). Secretory processes in Plasmodium. Parasitology Today 9, 80–1.CrossRefGoogle ScholarPubMed
Elmendorf, H. G. & Haldar, K. (1993). Secretory transport in Plasmodium. Parasitology Today 9, 98102.Google Scholar
Fandeur, T., Bonnefoy, S. & Mercereau-Puijalon, O. (1991). In vivo and in vitro derived Palo Alto lines of Plasmodium falciparum are genetically unrelated. Molecular and Biochemical Parasitology 47, 167–78.Google Scholar
Freeman, R. R., Trejdosiewicz, A. J. & Cross, G. A. M. (1980). Protective monoclonal antibodies recognising stage-specific merozoite antigens of a rodent malaria parasite. Nature, London 284, 366–8.Google Scholar
Galfre, G., Hove, S. C., Milstein, C., Butcher, G. W. & Howard, J. C. (1977). Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature, London 266, 550–2.Google Scholar
Geysen, H. M., Meloen, R. H. & Bartelinc, S. J. (1984). Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proceedings of the National Academy of Sciences, USA 81, 39984002.Google Scholar
Hall, R., McBride, J., Morgan, G., Tait, A., Zolg, J. W., Walliker, D. & Scaife, J. (1983). Antigens of the erythrocytic stages of the human malaria parasite Plasmodium falciparum detected by monoclonal antibodies. Molecular and Biochemical Parasitology 7, 247–65.Google Scholar
Holder, A. A. & Freeman, R. R. (1981). Immunization against blood-stages of rodent malaria using purified parasite antigens. Nature, London 294, 361–4.Google Scholar
Holder, A. A., Freeman, R. R., Uni, S. & Aikawa, M. (1985). Isolation of a Plasmodium falciparum rhoptry protein. Molecular and Biochemical Parasitology 14, 293303.Google Scholar
Jouin, H., Dubois, P., Gysin, J., Fandeur, T., Mercereaupuijalon, O. & Pereira Da Silva, L. (1987). Characterisation of a 96-kilodalton thermostable polypeptide antigen of Plasmodium falciparum related to protective immunity in squirrel monkey. Infection and Immunity 55, 1387–92.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature, London 277, 680–2.Google Scholar
Lambros, C. & Vanderberg, J. P. (1979). Synchronization of Plasmodium falciparum erythrocytic stages in culture. Journal of Parasitology 65, 418–20.Google Scholar
Li, Wenlu, Fan, Rugong, MAO, Yinhong, Liu, Erxiang, Arriat, D., Pereira Da Silva, L. (1986). Characterization of McAbs (32, C2, D3) against P. falciparum. Proceedings of the Chinese Academy of Medical Sciences 4, 208–12.Google Scholar
Lustigman, S., Anders, R. F., Brown, G. V. & Coppel, R. L. (1988). A component of an antigenic rhoptry complex of Plasmodium falciparum is modified after invasion. Molecular and Biochemical Parasitology 30, 217–24.Google Scholar
Mehlhorn, H. (1988). Cellular organization of the Protozoa. In Parasitology in Focus (ed. Mehlhorn, H.), pp. 161188. Berlin, Heidelberg: Springer Verlag.CrossRefGoogle Scholar
Myler, P., Saul, A., Mangan, T. & Kidson, C. (1982). An automated assay of merozoite invasion of erythrocytes using highly synchronized Plasmodium falciparum cultures. Australian Journal of Experimental Biology and Medical Science 60, 83–9.CrossRefGoogle ScholarPubMed
Oka, M., Aikawa, M., Freeman, R. R., Holder, A. A. & Fine, E. (1984). Ultrastructural localisation of protective antigens of Plasmodium yoelii merozoites by the use of monoclonal antibodies and ultrathincryomicrotomy. American Journal of Tropical Medicine and Hygiene 33, 342–6.Google Scholar
Perkins, M. E. & Rocco, L. J. (1988). Sialic acid-dependent binding of Plasmodium falciparum merozoite surface antigen, Pf200, to human erythrocytes. Journal of Immunology 141, 3190–6.Google Scholar
Perkins, M. E. (1992). Rhoptry organelles of Apicomplexan parasites. Parasitology Today 8, 2832.Google Scholar
Perrin, L. H., Ramirez, E., Lambert, P. H. & Miescher, P. A. (1981). Inhibition of P. falciparum growth in human erythrocytes by monoclonal antibodies. Nature, London 289, 301–3.Google Scholar
Ridley, R. G., Takacs, B., Etlinger, H. & Scaife, J. G. (1990 a). A rhoptry antigen of Plasmodium falciparum is protective in Saimiri monkeys. Parasitology 101, 187–92.Google Scholar
Ridley, R. G., Takacs, B., Lahm, H.-W., Delves, C. J., Goman, M., Certa, U., Matile, H., Woollett, G. R. & Scaife, J. G. (1990 b). Characterisation and sequence of a protective rhoptry antigen from Plasmodium falciparum. Molecular and Biochemical Parasitology 41, 125–34.CrossRefGoogle ScholarPubMed
Roger, N., Dubremetz, J. F., Delplace, P., Fortier, B., Tronchin, G. & Vernes, A. (1988). Characterization of a 225 kilodalton rhoptry protein of Plasmodium falciparum. Molecular and Biochemical Parasitology 27, 135–42.CrossRefGoogle ScholarPubMed
Sam-Yellowe, T. & Perkins, M. E. (1990). Binding of Plasmodium falciparum rhoptry proteins to mouse erythrocytes and their possible role in invasion. Molecular and Biochemical Parasitology 39, 91100.Google Scholar
Sam-Yellowe, T. & Perkins, M. E. (1991). Interaction of the 140/130/110 kDa rhoptry protein complex of Plasmodium falciparum with the erythrocyte membrane and liposomes. Experimental Parasitology 73, 161–71.Google Scholar
Sam-Yellowe, T. Y., Shio, H. & Perkins, M. E. (1988). Secretion of Plasmodium falciparum rhoptry protein into the plasma membrane of host erythrocytes. Journal of Cell Biology 106, 1507–12.Google Scholar
Saul, A., Cooper, J., Hauquitz, D., Irving, D., Cheng, Q., Stowers, A. & Limpaiboon, T. (1992). The 42-kilodalton rhoptry-associated protein of Plasmodium falciparum. Molecular and Biochemical Parasitology 50, 139–50.Google Scholar
Scherf, A., Mattel, D. & Schreiber, M. (1990). Parasite antigens expressed in Escherichia coli. A refined approach for epidemiological analysis. Journal of Immunological Methods 128, 81–7.Google Scholar
Schofield, L., Bushell, G. R., Cooper, J. A., Saul, A. J., Upcroft, J. A. & Kidson, C. (1986). A rhoptry antigen of Plasmodium falciparum contains conserved and variable epitopes recognized by inhibitory monoclonal antibodies. Molecular and Biochemical Parasitology 18, 183–95.Google Scholar
Schwartzman, J. D. (1986). Inhibition of a penetration-enhancing factor of Toxoplasma gondii by monoclonal antibodies specific for rhoptries. Infection and Immunity 51, 760–4.Google Scholar
Shively, J. E., Wagener, C. & Clark, B. R. (1986). Solution-phase RIA and solid-Phase EIA using avidin-biotin systems for analysis of monoclonal antibody epitopes and affinity constants. In Methods in Enzymology vol. 121 (ed. Langone, J. J. & van Vunakis, H.), pp. 459472. Orlando: Academic Press.Google Scholar
Stähli, C., Miggiano, V., Stocker, J., Staehelin, T.H., Häring, P. & Takacs, B. (1983). Distinction of epitopes by monoclonal antibodies. In Methods in Enzymology, vol. 92 (ed. Langone, J. J. & van Vunakis, H.), pp. 242253. Orlando: Academic Press.Google Scholar
Trager, W. & Jensen, J.B.. (1976). Human malarial parasites in continuous culture. Science 193, 673–5.Google Scholar
Voller, A. & O'Neill, P. O. (1971). Immunofluorescence method suitable for large-scale application to malaria. Bulletin of the World Health Organization 45, 451–2.Google Scholar