Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T03:18:23.795Z Has data issue: false hasContentIssue false

Analysis of genetic variability of Fasciola hepatica populations from different geographical locations by ISSR-PCR

Published online by Cambridge University Press:  30 September 2014

D. ROBLES-PÉREZ
Affiliation:
Faculty of Veterinary Medicine, University of León, Campus de Vegazana, 24071 León, Spain
P. GARCÍA-GARCÍA
Affiliation:
Faculty of Biological and Environmental Sciences, University of León, Campus de Vegazana, 24071 León, Spain
J. M. MARTÍNEZ-PÉREZ
Affiliation:
Faculty of Veterinary Medicine, University of León, Campus de Vegazana, 24071 León, Spain
F. A. ROJO-VÁZQUEZ
Affiliation:
Faculty of Veterinary Medicine, University of León, Campus de Vegazana, 24071 León, Spain Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas, 24346 Grulleros, León, Spain
M. MARTÍNEZ-VALLADARES*
Affiliation:
Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas, 24346 Grulleros, León, Spain
*
*Corresponding author: Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas, 24346 Grulleros, León, Spain. E-mail [email protected]

Summary

Inter-simple sequence repeats markers were used to determinate the genetic variability of Fasciola hepatica populations recovered from sheep and cattle from Spain (Sp1, Sp2, Sp3 and Sp4), UK (Eng), Ireland (Ir) and Mexico (Mex). Twenty five primers were tested but only five produced 39 reproducible bands, being 71·79% polymorphic bands. This percentage ranged from 10·26% in Sp4 to 48·72% in Sp1, and per host between 28·21 and 48·72% in sheep and between 10·26 and 38·46% in cattle. This relatively low range of genetic diversity within populations, with a mean of 34·40%, implies that a large proportion of variation resided among populations. The population differentiation (Gst = 0·547) indicated that 54·7% of variation is due to differences between populations and 45·3% due to differences within population. The Nei's distance ranged between 0·091 and 0·230 in sheep and between 0·150 and 0·337 in cattle. The genetic relationships between populations and individuals were shown by a UPGMA dendrogram and a principal coordinate analysis; both grouped all populations separately from Sp4, a population of from the Midwest of Spain with the lowest level of diversity. Small genetic distances were observed between Eng and Ir, on the one hand, and Sp1, Sp2, Sp3, from the Northwest of Spain, together with Mex, on the other.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alasaad, S., Li, Q. Y., Lin, R. Q., Martín-Atance, P., Granados, J. E., Díez-Baños, P., Pérez, J. M. and Zhu, X. Q. (2008). Genetic variability among Fasciola hepatica samples from different host species and geographical localities in Spain revealed by the novel SRAP marker. Parasitology Research 103, 181186.CrossRefGoogle ScholarPubMed
Allendorf, F. W., Luikart, G. and Aitken, S. N. (2013). Conservation and the Genetics of Populations, 2nd Edn. Wiley-Blackwell, UK.Google Scholar
Beja-Pereira, A., Caramelli, D., Lalueza, C., Vernesi, C., Ferrand, N., Sampietro, L., Casoli, A., Goyache, F., Royo, L. J., Conti, S., Lari, M., Martini, A., Ouragh, L., Magid, A., Atash, A., Boscato, P., Triantophylidis, C., Ploumi, K., Sineo, L., Mallegni, F., Taberlet, P., Erhardt, G., Bertranpetit, J., Barbujani, G., Luikart, G. and Bertorelle, G. (2006). The origin of European cattle: evidence from modern and ancient DNA. Proceedings of the National Academy of Sciences of the USA 103, 81138118.Google Scholar
Charlesworth, B. and Charlesworth, D. (2009). Darwin and genetics. Genetics 183, 757766.Google Scholar
Crow, J. F. (2000). The origins, patterns and implications of human spontaneous mutation. Nature Reviews Genetic 1, 4047.Google Scholar
Farjallah, S., Slimane, B. B., Piras, C. M., Amor, N., Garippa, G. and Merella, P. (2013). Molecular characterization of Fasciola hepatica from Sardinia based on sequence analysis of genomic and mitochondrial gene markers. Experimental Parasitology 135, 471478.CrossRefGoogle ScholarPubMed
Felsenstein, J. (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle.Google Scholar
Fonseca-Salamanca, F., Nogal-Ruiz, J. J., Benito, C., Camachot, M. V. and Martínez-Fernández, A. R. (2006). Molecular characterization of Trichinella genotypes by intersimple sequence repeat polymerase chain reaction (ISSR-PCR). Journal of Parasitology 92, 606610.CrossRefGoogle ScholarPubMed
Gupta, M., Chyi, Y. S., Romero-Severson, J. and Owen, J. L. (1994). Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theoretical and Applied Genetics 89, 9981006.Google Scholar
Hurtrez-Bousses, S., Durand, P., Jabbour-Zahab, R., Guegan, J. F., Meunier, C., Bargues, M. D., Mas-Coma, S. and Renaud, F. (2004). Isolation and characterization of microsatellite markers in the liver fluke (Fasciola hepatica). Molecular Ecology Notes 4, 689690.Google Scholar
Kojima, T., Nagaoka, T., Noda, K. and Ogihara, Y. (1998). Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers. Theoretical and Applied Genetics 96, 3745.Google Scholar
Li, Q. Y., Dong, S. J., Zhang, W. Y., Lin, R. Q., Wang, C. R., Qian, D. X., Lun, Z. R., Song, H. Q. and Zhu, X. Q. (2009). Sequence-related amplified polymorphism, an effective molecular approach for studying genetic variation in Fasciola spp. of human and animal health significance. Electrophoresis 30, 403409.CrossRefGoogle ScholarPubMed
Martínez-Valladares, M. and Rojo-Vázquez, F. A. (2014). Intraspecific mitochondrial DNA variation of Fasciola hepatica eggs from sheep with different level of anthelmintic resistance. Parasitology Research 13, 27332741.CrossRefGoogle Scholar
Martínez-Valladares, M., Famularo, M. R., Fernández-Pato, N., Castañón-Ordóñez, L., Cordero-Pérez, C. and Rojo-Vázquez, F. A. (2010). Efficacy of nitroxynil against Fasciola hepatica resistant to triclabendazole in a naturally infected sheep flock. Parasitology Research 107, 12051211.CrossRefGoogle Scholar
Martínez-Valladares, M., Cordero-Pérez, C. and Rojo-Vázquez, F. A. (2013 a). Efficacy of an anthelmintic combination in sheep infected with Fasciola hepatica resistant to albendazole and clorsulon. Experimental Parasitology 6, 5962.Google Scholar
Martínez-Valladares, M., Robles-Pérez, D., Martínez-Pérez, J. M., Cordero-Pérez, C., Famularo, M. R., Fernández-Pato, N., González-Lanza, C., Castañón-Ordóñez, L. and Rojo-Vázquez, F. A. (2013 b). Prevalence of gastrointestinal nematodes and Fasciola hepatica in sheep in the northwest of Spain: relation to climatic conditions and/or man-made environmental modifications. Parasites and Vectors 27, 282290.CrossRefGoogle Scholar
Moll, L., Gaasenbeek, C. P., Vellema, P. and Borgsteede, F. H. (2000). Resistance of Fasciola hepatica against triclabendazole in cattle and sheep in the Netherlands. Veterinary Parasitology 91, 153158.CrossRefGoogle ScholarPubMed
Morozova, E. V., Ryskov, A. P. and Semyenova, S. K. (2002). RAPD variation in two treamtode species (Fasciola hepatica and Dicrocoelium dendriticum) from a single cattle population. Genetika 38, 11551162.Google Scholar
Mooney, L., Good, B., Hanrahan, J. P., Mulcahy, G. and de Waal, T. (2009). The comparative efficacy of four anthelmintics against a natural acquired Fasciola hepatica infection in hill sheep flock in west of Ireland. Veterinary Parasitology 164, 201205.Google Scholar
Njiru, Z. K., Constantine, C. C., Gitonga, P. K., Thompson, R. C. and Reid, S. A. (2007). Genetic variability of Trypanosoma evansi isolates detected by inter-simple sequence repeat anchored-PCR and microsatellite. Veterinary Parasitology 147, 5160.Google Scholar
Olaechea, F., Lovera, V., Larroza, M., Raffo, F. and Cabrera, R. (2011). Resistance of Fasciola hepatica against triclabenzadole in cattle in Patagonia (Argentina). Veterinary Parasitology 178, 364366.Google Scholar
Peakall, R. and Smouse, P. E. (2012). GenAlEx 6·5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28, 25372539.Google Scholar
Rojo-Vázquez, F. A., Meana, A., Valcárcel, F. and Martínez-Valladares, M. (2012). Update on trematode infections in sheep. Veterinary Parasitology 30, 1538.Google Scholar
Semyenova, S. K., Morozova, E. V., Chrisanfova, G. G., Asatrian, A. M., Movsessian, S. O. and Ryskov, A. P. (2003). RAPD variability and genetic diversity in two populations of liver fluke, Fasciola hepatica . Acta Parasitologica 48, 12302821.Google Scholar
Teofanova, D., Kantzoura, V., Walker, S., Radoslavov, G., Hristov, P., Theodoropoulos, G., Bankov, I. and Trudgett, A. (2011). Genetic diversity of liver flukes (Fasciola hepatica) from Eastern Europe. Infection, Genetics and Evolution 11, 109115.Google Scholar
Teofanova, D., Hristov, P., Yoveva, A. and Rdoslavov, G. (2012). Issues associated with genetic diversity studies of the Liver Fluke, Fasciola hepatica (Platyhelminthes, Digenea, Fasciolidae). In Genetic Diversity in Microorganisms (ed. Caiskan, M) ISBN: 978-953-51-0064-5, InTech, doi: 10.57772/34038. Available from: http://www.Intechopen.com/books/genetic-diversity-in-microorganisms/issues-associated-with-genetic-diversity-studies-of-the-live-fluke-fasciola-hepatica-platyhelminthes.Google Scholar
Vara-Del Río, M. P., Villa, H., Martinez-Valladares, M. and Rojo-Vázquez, F. A. (2007). Genetic heterogeneity of Fasciola hepatica isolates in the northwest of Spain. Parasitology Research 101, 10031006.Google Scholar
Vázquez-Prieto, S., Vilas, S., Mezo, M., González-Warleta, M., Ubeira, F. M. and Paniagua, E. (2011). Allozyme markers suitable for population genetic analysis of Fasciola hepatica . Veterinary Parasitology 176, 8488.Google Scholar
Vázquez-Prieto, S., González-Díaz, H., Paniagua, E., Vilas, R. and Ubeira, F. M. (2014). A QSPR-like model for multilocus genotype networks of Fasciola hepatica in Northwest Spain. Journal of Theoretical Biology 344, 1624.Google Scholar
Vilas, R., Vázquez-Prieto, S. and Paniagua, E. (2012). Contrasting patterns of population genetic structure of Fasciola hepatica from cattle and sheep: implications for the evolution of anthelmintic resistance. Infection, Genetics and Evolution 12, 4552.CrossRefGoogle ScholarPubMed
Walker, S. M., Prodöhl, P. A., Fletcher, H. L., Hanna, R. E. B., Kantzoura, V., Hoey, E. M. and Trudgett, A. (2007). Evidence for multiple mitochondrial lineages of Fasciola hepatica (liver fluke) within infrapopulations from cattle and sheep. Parasitology Research 101, 117125.Google Scholar
Yamaguti, S. (1958). Systema Helminthum, the Digenetic Trematodes of Vertebrates, Vol. I. Interscience Publishers. New York, USA.Google Scholar
Yeh, F. C., Yang, R. C., Boyle, T., Ye, Z. H. and Mao, J. X. (1997). POPGENE, the User Friendly Shareware for Population Genetic Analysis. Molecular Biology and Biotechnology Center. University of Alberta. Edmonton, Canada.Google Scholar
Zhao, G. H., Li, J., Zou, F. C., Mo, X. H., Yuan, Z. G., Lin, R. Q., Weng, Y. B. and Zhu, X. Q. (2009). ISSR, an effective molecular approach for studying genetic variability among Schistosoma japonicum isolates from different provinces in mainland China. Infection, Genetics and Evolution 9, 903907.Google Scholar
Zietkiewicz, E., Rafalski, A. and Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176183.Google Scholar