Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T16:49:05.320Z Has data issue: false hasContentIssue false

An integrated pipeline for the development of novel panels of mapped microsatellite markers for Leishmania donovani complex, Leishmania braziliensis and Leishmania major

Published online by Cambridge University Press:  27 March 2008

M. FAKHAR
Affiliation:
Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences. Shiraz, Iran
M. H. MOTAZEDIAN
Affiliation:
Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences. Shiraz, Iran
D. DALY
Affiliation:
School of Biological Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB
C. D. LOWE
Affiliation:
School of Biological Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB
S. J. KEMP
Affiliation:
School of Biological Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB
H. A. NOYES*
Affiliation:
School of Biological Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB
*
*Corresponding author: Room 231 Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB. Tel: +0151 795 4512. www.genomics.liv.ac.uk/tryps. E-mail: [email protected]

Summary

A panel of microsatellites mapped to the Leishmania genome might make it possible to find associations between specific loci and phenotypic traits. To identify such loci, a Perl programme was written that scans the sequence of a genome and writes all loci containing microsatellites to a MySQL database. The programme was applied to the sequences of the L. braziliensis, L. infantum and L. major genomes. The database is publicly available over the internet: http://www.genomics.liv.ac.uk/tryps/resources.html ‘Microsatellite Locus Extractor’, and allows the selection of mapped microsatellites that meet user-defined criteria from a specified region of the selected genome. The website also incorporates a primer design pipeline that will design primers to amplify the selected loci. Using this pipeline 12 out of 17 primer sets designed against the L. infantum genome generated polymorphic PCR products. A tailed primer protocol was used to label all microsatellite primers with a single set of labelled primers. To avoid the culture of parasites prior to genotyping, sets of nested PCR primers were developed to amplify parasite DNA eluted from microscope slides. The limit of detection was approximately 1·6 parasite equivalents. However, only 6/56 DNA from slides stored at ambient temperature for over 6 months gave positive PCR results.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alborzi, A., Rasouli, M. and Shamsizadeh, A. (2006). Leishmania tropica-isolated patient with visceral leishmaniasis in southern Iran. American Journal of Tropical Medicine and Hygiene 74, 306307.CrossRefGoogle ScholarPubMed
Aljanabi, S. and Martinez, I. (1997). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25, 46924693.CrossRefGoogle ScholarPubMed
Botstein, D., White, R. L., Skolnick, M. and Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32, 314331.Google ScholarPubMed
Boutin-Ganache, I., Raposo, M., Raymond, M., Christian, F. and Deschepper, C. F. (2001). M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. BioTechniques 31, 2427.CrossRefGoogle ScholarPubMed
Bulle, B., Millon, L., Bart, J. M., Gállego, M., Gambarelli, F., Portús, M., Schnur, L., Jaffe, C. L., Fernandez- Barredo, S., Alunda, J. M. and Piarroux, R. (2002). Practical approach for typing strains of Leishmania infantum by microsatellite analysis. Journal of Clinical Microbiology 40, 33913397.CrossRefGoogle ScholarPubMed
Desjeux, P. (2001).The increase in risk factors for leishmaniasis world wide. Transactions of the Royal Society of Tropical Medicine and Hygiene 95, 239243.CrossRefGoogle Scholar
Geramizadeh, B., Fakhar, M. and Motazedian, M. H. (2006). Visceral leishmaniasis with duodenal involvement: three immunocompetent cases from southern Iran. Annals of Tropical Medicine and Parasitology 100, 637640.CrossRefGoogle ScholarPubMed
Jamjoom, M. B., Ashford, R. W., Bates, P. A., Kemp, S. J. and Noyes, H. A. (2002 a). Polymorphic microsatellite repeats are not conserved between Leishmania donovani and Leishmania major. Molecular Ecology Notes 2, 104106.CrossRefGoogle Scholar
Jamjoom, M. B., Ashford, R. W., Bates, P. A., Kemp, S. J. and Noyes, H. A. (2002 b). Towards a standard battery of microsatellite markers for the analysis of Leishmania donovani complex. Annals of Tropical Medicine and Parasitology 96, 265270.CrossRefGoogle ScholarPubMed
Kuhls, K., Keilonat, L., Ochsenreither, S., Schaar, M., Schweynoch, C., Presber, W. and Schonian, G. (2007). Multilocus microsatellite typing (MLMT) reveals genetically isolated populations between and within the main endemic regions of visceral leishmaniasis. Microbes and Infection 9, 334343.CrossRefGoogle ScholarPubMed
Mohebali, M., Edrissian, GH. H., Nadim, A., Hajjaran, H., Akhoundi, B., Hooshmand, B., Zarei, Z., Arshi, SH., Mirsamadi, N., Manouchehri Naeini, K., Mamishi, S., Sanati, A. A., Moshfe, A. A., Charehdar, S. and Fakhar, M. (2007). Application of direct agglutination test (DAT) for the diagnosis and seroepidemiological studies of visceral leishmaniasis in Iran. Iranian Journal of Parasitology 1, 1525.Google Scholar
Montoya, L., Gállego, M., Gavignet, B., Piarroux, R., Rioux, J. A., Portús, M. and Fisa, R. (2007). Application of microsatellite genotyping to the study of a restricted Leishmania infantum focus: different genotype compositions in isolates from dogs and sand flies. American Journal of Tropical Medicine and Hygiene 76, 888895.CrossRefGoogle Scholar
Morrison, L. J., McCormack, G., Sweeney, L., Likeufack, A. C., Truc, P., Turner, C. M., Tait, A. and MacLeod, A. (2007).Use of multiple displacement amplification to increase the detection and genotyping of Trypanosoma species samples immobilized on FTA filters. American Journal of Tropical Medicine and Hygiene 76, 11321137.CrossRefGoogle ScholarPubMed
Oetting, W. S., Lee, H. K., Flanders, D. J., Wiesner, G. L., Sellers, T. A. and King, R. A. (1995). Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics 30, 450458.CrossRefGoogle ScholarPubMed
Ravel, S., Cuny, G., Reynes, J. and Veas, F. (1995). A highly sensitive and rapid procedure for direct PCR detection of Leishmania infantum within human peripheral blood mononuclear cells. Acta Tropica 59, 187196.CrossRefGoogle ScholarPubMed
Rozen, S. and Skaletsky, H. (2000). Primer 3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology 132, 365386.Google Scholar
Russell, R., Iribar, M. P., Lambson, B., Brewster, S., Blackwell, J. M., Dye, C. and Ajioka, J. W. (1999). Intra and inter-specific microsatellite variation in the Leishmania subgenus Viannia. Molecular and Biochemical Parasitology 103, 7177.CrossRefGoogle ScholarPubMed