Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T19:06:21.711Z Has data issue: false hasContentIssue false

An IgG (Fcγ,)-binding protein of Taenia crassiceps (Cestoda) exhibits sequence homology and antigenic similarity with schistosome paramyosin

Published online by Cambridge University Press:  06 April 2009

B. Kalinna
Affiliation:
Molecular Helminthology Laboratory, Division of Tropical Health and Infectious Diseases, Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, Herston, Brisbane, Queensland 4029, Australia
D. P. McManus
Affiliation:
Molecular Helminthology Laboratory, Division of Tropical Health and Infectious Diseases, Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, Herston, Brisbane, Queensland 4029, Australia

Summary

Previous studies from this laboratory have suggested the presence of antibody-binding molecules on the surface of Taenia crassiceps metacestodes. We now report the purification of a T. crassiceps Fcγ -binding protein which has an equivalent molecular size (96 kDa), is antigenically similar and exhibits significant amino acid sequence homology to schistosome paramyosin. The similarities in molecular weight of the T. crassiceps protein, Schistosoma mansoni paramyosin and antigen B of T. solium, the close amino acid sequence homologies between the T. crassiceps protein and S. mansoni paramyosin and between S. mansoni paramyosin and antigen B of T. solium, and the antigenic similarity of the T. crassiceps protein with paramyosin indicates that this family of platyhelminth proteins are closely related. The known characteristics of T. solium antigen B (collagen binding affinity; disruption of complement function) and the Fcγ -binding activity of the T. crassiceps molecule suggests that this class of proteins may be multifunctional, fulfilling not only a structural role but also as components interacting with the host immune system to increase parasite survival.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aebersold, R. H., Leavitt, J., Saavedra, R. A., Hood, L. E. & Kent, S. B. H. (1987). Internal amino acid sequence analysis of proteins separated by one- or two- dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proceedings of the National Academy of Sciences, USA 84, 6970–4.CrossRefGoogle ScholarPubMed
Alkarmi, T. O., Alshakarchi, Z. & Behbehani, K. (1988). Echinococcus multilocularis: the non-specific binding of different species of immunoglobulins to alveolar hydatid cysts grown in vivo and in vitro. Parasite Immunology 10, 442–57.Google Scholar
Blum, H., Beier, H. & Gross, H. (1987). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93–9.Google Scholar
Damian, R. T. (1987). The exploitation of host immune responses by parasites. Journal of Parasitology 73, 313.Google Scholar
Flannigan, T. P., King, C. H., Lett, R. R., Nanduri, J. & Mahmoud, A. A. F. (1989). Induction of resistance to Schistosoma mansoni infection in mice by purified parasite paramyosin. Journal of Clinical Investigation 83, 1010–14.Google Scholar
Flisser, A., Espinoza, B., Tovar, A., Plancarte, A. & Correa, D. (1986). Host-parasite relationship in cysticercosis: immunologic study in different compartments of the host. Veterinary Parasitology 20, 95102.Google Scholar
Kalinna, B., Becker, M. & Geyer, E. (1989). Immunoelectrophoretical analyses of antigens shared by the vesicular fluid and cyst wall of Taenia crassiceps and Taenia saginata metacestodes. Parasitology Research 75, 568–74.Google Scholar
Kulczycki, A., Krause, V., Killion, C. C. & Atkinson, J. P. (1980). Purification of Fcγ receptor from rabbit alveolar macrophages that retains ligand-binding activity. Journal of Immunology 124, 2772–9.Google Scholar
Laclette, J. P., Landa, A., Arcos, L., Willms, K., David, A. E. & Shoemaker, C. B. (1991). Paramyosin is the Schistosoma mansoni (Trematoda) homologue of antigen B from Taenia solium (Cestoda). Molecular and Biochemical Parasitology 44, 287–96.CrossRefGoogle ScholarPubMed
Laclette, J. P., Rodriguez, M., Landa, A., Arcos, L., De Alba, P., Mancilla, R. & Willms, K. (1989). The coexistence of Taenia solium cysticerci and the pig: role of antigen B. Acta Leidensia 57, 115–22.Google Scholar
Laclette, J. P., Shoemaker, C. B., Richter, D., Arcos, L., Pante, N., Cohen, C., Bing, D. & Nicholson-Weller, A. (1992). Paramyosin inhibits complement C1. Journal of Immunology 148, 124–8.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature, London 227, 680–5.Google Scholar
Lamsam, S. (1988). Immunological and molecular characterisation of Taenia crassiceps. Ph.D. thesis, University of London.Google Scholar
Lamsam, S. & McManus, D. P. (1990). Molecular characterization of the surface and cyst fluid components of Taenia crassiceps. Parasitology 101, 115–25.CrossRefGoogle ScholarPubMed
Lane, B. C. & Cooper, S. M. (1982). Fc receptors of mouse cell lines. I. Distinct proteins mediate the IgG subclass-specific Fc binding activities of macrophages. Journal of Immunology 128, 1819–24.CrossRefGoogle ScholarPubMed
Loube, S. R., McNabb, T. C. & Dorrington, K. J. (1978). Isolation of an Fcγ -binding protein from the cell membrane of a macrophage-like cell line (7388D1) after detergent solubilization. Journal of Immunology 120, 709–15.Google Scholar
McLachlan, A. D. & Karn, J. (1982). Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacing in muscle. Nature, London 299, 226–31.CrossRefGoogle ScholarPubMed
McManus, D. P. & Lamsam, s. (1990). Taenia crassiceps surface immunoglobulins: parasite-or host-derived? Parasitology 101, 127–37.CrossRefGoogle ScholarPubMed
Olivo, A., Plancarte, A. & Flisser, A. (1988). Presence of antigen B from Taenia solium cysticercus in other Platyhelminthes. International Journal for Parasitology 18, 543–5.Google Scholar
Pearce, E. J., James, S. L., Hieny, S., Lanar, D. E. & Sher, A. (1988). Induction of protective immunity against Schistosoma mansoni by vaccination with schistosome paramyosin (Sm97), a nonsurface parasite antigen. Proceedings of the National Academy of Sciences, USA 85, 5678–82.Google Scholar
Rickard, M.J. (1974). Hypothesis for the long-term survival of Taenia pisiformis cysticerci in rabbits. Zeitschrift für Parasitenkunde 44, 203–9.Google Scholar
Schneider, R. J., Atkinson, J. P., Krause, V. & Kulczycki, A. (1981). Characterisation of ligand-binding activity of isolated murine Fcγ receptors. Journal of Immunology 126, 735–40.Google Scholar
Shepherd, J. C. (1988). Antigens for the immunodiagnosis of hydatid disease. Ph.D. thesis, University of London.Google Scholar
Smyth, J. D. & McManus, D. P. (1989). The Physiology and Biochemistry of Cestodes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Tarleton, R. L. & Kemp, W. M. (1981). Demonstration of IgG-Fc and C3 receptors on adult Schistosoma mansoni. Journal of Immunology 126, 379–84.Google Scholar
Torpier, G., Capron, A. & Ouaissi, M. A. (1979). Receptors for IgG (Fc) and human beta 2-microglobulin on S. mansoni schistosomula. Nature, London 278, 447–9.Google Scholar
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350–4.Google Scholar