Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T23:45:44.143Z Has data issue: false hasContentIssue false

An agent-based model of exposure to human toxocariasis: a multi-country validation

Published online by Cambridge University Press:  10 April 2013

K. KANOBANA*
Affiliation:
Department of Biomedical Sciences, Unit of Medical Helminthology, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
B. DEVLEESSCHAUWER
Affiliation:
Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium Faculty of Public Health, Institute of Health and Society, Université Catholique de Louvain, Clos Chapelle aux champs 30, 1200 Bruxelles
K. POLMAN
Affiliation:
Department of Biomedical Sciences, Unit of Medical Helminthology, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
N. SPEYBROECK
Affiliation:
Faculty of Public Health, Institute of Health and Society, Université Catholique de Louvain, Clos Chapelle aux champs 30, 1200 Bruxelles
*
*Corresponding author. Department of Biomedical Sciences, Unit of Medical Helminthology, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium. E-mail: [email protected]/[email protected]

Summary

Seroprevalence data illustrate that human exposure to Toxocara is frequent. Environmental contamination with Toxocara spp. eggs is assumed to be the best indicator of human exposure, but increased risk of exposure has also been associated with many other factors. Reported associations are inconsistent, however, and there is still ambiguity regarding the factors driving the onset of Toxocara antibody positivity. The objective of this work was to assess the validity of our current conceptual understanding of the key processes driving human exposure to Toxocara. We constructed an agent-based model predicting Toxocara antibody positivity (as a measure of exposure) in children. Exposure was assumed to depend on the joint probability of 3 parameters: (1) environmental contamination with Toxocara spp. eggs, (2) larvation of these eggs and (3) the age-related contact with these eggs. This joint probability was linked to processes of acquired humoral immunity, influencing the rate of antibody seroreversion. The results of the simulation were validated against published data from 5 different geographical settings. Using simple rules and a stochastic approach with parameter estimates derived from the respective contexts, plausible serological patterns emerged from the model in nearly all settings. Our approach leads to novel insights in the transmission dynamics of Toxocara.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alonso, J. M., Bojanich, M. V., Chamorro, M. and Gorodner, J. O. (2000). Toxocara seroprevalence in children from a subtropical city in Argentina. Revista do Instituto de Medicina Tropical de Sao Paulo 42, 235237. pii: S0036-46652000000400010.CrossRefGoogle ScholarPubMed
Alonso, J. M., Stein, M., Chamorro, M. C. and Bojanich, M. V. (2001). Contamination of soils with eggs of Toxocara in a subtropical city in Argentina. Journal of Helminthology 75, 165168. pii: S0022149X01000245.Google Scholar
Altcheh, J., Nallar, M., Conca, M., Biancardi, M. and Freilij, H. (2003). Toxocariasis: clinical and laboratory features in 54 patients. Anales de pediatria (Barcelona, Spain: 2003) 58, 425431. pii: 13046522.CrossRefGoogle ScholarPubMed
Anaruma, F. F., Chieffi, P. P., Correa, C. R., Camargo, E. D., Silveira, E. P., Aranha, J. J. and Ribeiro, M. C. (2002). Human toxocariasis: a seroepidemiological survey in the municipality of Campinas (SP), Brazil. Revista do Instituto de Medicina Tropical de Sao Paulo 44, 303307. pii: S0036-46652002000600002.CrossRefGoogle Scholar
Avcioglu, H., Soykan, E. and Tarakci, U. (2011). Control of helminth contamination of raw vegetables by washing. Vector Borne and Zoonotic Diseases 11, 189191. doi: 10.1089/vbz.2009.0243.CrossRefGoogle ScholarPubMed
Baboolal, S. and Rawlins, S. C. (2002). Seroprevalence of toxocariasis in schoolchildren in Trinidad. Transactions of the Royal Society of Tropical Medicine and Hygiene 96, 139143.CrossRefGoogle ScholarPubMed
Beaver, P. C., Snyder, C. H., Carrera, G. M., Dent, J. H. and Lafferty, J. W. (1952). Chronic eosinophilia due to visceral larva migrans; report of three cases. Pediatrics 9, 719.CrossRefGoogle ScholarPubMed
Bonabeau, E. (1997). From classical models of morphogenesis to agent-based models of pattern formation. Artificial Life 3, 191211.CrossRefGoogle ScholarPubMed
Buijs, J. and van, K. F. (1994). Toxocara infection in children and the relation with allergic manifestations. Veterinary Quarterly 16 (Suppl. 1), 13S14S.CrossRefGoogle ScholarPubMed
Buijs, J., Borsboom, G., van Gemund, J. J., Hazebroek, A., van Dongen, P. A., van, K. F. and Neijens, H. J. (1994). Toxocara seroprevalence in 5-year-old elementary schoolchildren: relation with allergic asthma. American Journal of Epidemiology 140, 839847.CrossRefGoogle ScholarPubMed
Buijs, J., Borsboom, G., Renting, M., Hilgersom, W. J., van Wieringen, J. C., Jansen, G. and Neijens, J. (1997). Relationship between allergic manifestations and Toxocara seropositivity: a cross-sectional study among elementary school children. European Respiratory Journal 10, 14671475.CrossRefGoogle ScholarPubMed
Bwalya, E. C., Nalubamba, K. S., Hankanga, C. and Namangala, B. (2011). Prevalence of canine gastrointestinal helminths in urban Lusaka and rural Katete Districts of Zambia. Preventive Veterinary Medicine 100, 252255. pii: S0167-5877(11)00143-7; doi: 10.1016/j.prevetmed.2011.04.015.CrossRefGoogle ScholarPubMed
Cilla, G., Perez-Trallero, E., Gutierrez, C., Part, C. and Gomariz, M. (1996). Seroprevalence of Toxocara infection in middle-class and disadvantaged children in northern Spain (Gipuzkoa, Basque Country). European Journal of Epidemiology 12, 541543.CrossRefGoogle ScholarPubMed
Colli, C. M., Rubinsky-Elefant, G., Paludo, M. L., Falavigna, D. L., Guilherme, E. V., Mattia, S., Araujo, S. M., Ferreira, E. C., Previdelli, I. T. and Falavigna-Guilherme, A. L. (2010). Serological, clinical and epidemiological evaluation of toxocariasis in urban areas of south Brazil. Revista do Instituto de Medicina Tropical de Sao Paulo 52, 6974. pii: S0036-46652010000200002.CrossRefGoogle ScholarPubMed
Congdon, P. and Lloyd, P. (2011). Toxocara infection in the United States: the relevance of poverty, geography and demography as risk factors, and implications for estimating county prevalence. International Journal of Public Health 56, 1524. doi: 10.1007/s00038-010-0143-6.CrossRefGoogle ScholarPubMed
de Melker, H. E., van der Peet, T. E., Berbers, G. A., van de Akker, R., van Knapen, F., Schellekens, J. F. and Conyn-van Spaendonck, M. A. (1995). Pilot-onderzoek voor het Pienter-Project. Seroprevalenties voor bof, mazelen, rubella, kinkhoest, Toxoplasma gondii, Toxocara, T. spiralis an hepatitis A. 213675004. RIVM, Bilthoven, the Netherlands.Google Scholar
Elefant, G. R., Shimizu, S. H., Sanchez, M. C., Jacob, C. M. and Ferreira, A. W. (2006). A serological follow-up of toxocariasis patients after chemotherapy based on the detection of IgG, IgA, and IgE antibodies by enzyme-linked immunosorbent assay. Journal of Clinical Laboratory Analysis 20, 164172. doi: 10.1002/jcla.20126.CrossRefGoogle ScholarPubMed
Fahrion, A. S., Staebler, S. and Deplazes, P. (2008). Patent Toxocara canis infections in previously exposed and in helminth-free dogs after infection with low numbers of embryonated eggs. Veterinary Parasitology 152, 108115. pii: S0304-4017(07)00632-2; doi: 10.1016/j.vetpar.2007.11.022.CrossRefGoogle ScholarPubMed
Fontanarrosa, M. F., Vezzani, D., Basabe, J. and Eiras, D. F. (2006). An epidemiological study of gastrointestinal parasites of dogs from Southern Greater Buenos Aires (Argentina): age, gender, breed, mixed infections, and seasonal and spatial patterns. Veterinary Parasitology 136, 283295. pii: S0304-4017(05)00553-4; doi: 10.1016/j.vetpar.2005.11.012.CrossRefGoogle Scholar
Garcia, H. H., Gonzalez, A. E., Gilman, R. H., Palacios, L. G., Jimenez, I., Rodriguez, S., Verastegui, M., Wilkins, P. and Tsang, V. C. (2001). Short report: transient antibody response in Taenia solium infection in field conditions – a major contributor to high seroprevalence. American Journal of Tropical Medicine and Hygiene 65, 3132.CrossRefGoogle Scholar
Gawor, J., Borecka, A., Zarnowska, H., Marczynska, M. and Dobosz, S. (2008). Environmental and personal risk factors for toxocariasis in children with diagnosed disease in urban and rural areas of central Poland. Veterinary Parasitology 155, 217222. pii: S0304-4017(08)00266-5; doi: 10.1016/j.vetpar.2008.05.016.CrossRefGoogle Scholar
Glickman, L. T. and Schantz, P. M. (1981). Epidemiology and pathogenesis of zoonotic toxocariasis. Epidemiologic Reviews 3, 230250.CrossRefGoogle ScholarPubMed
Good, B., Holland, C. V., Taylor, M. R., Larragy, J., Moriarty, P. and O'Regan, M. (2004). Ocular toxocariasis in schoolchildren. Clinical Infectious Diseases 39, 173178. doi: 10.1086/421492; pii: CID32505.CrossRefGoogle ScholarPubMed
Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B., Pe'er, G., Piou, C., Railsback, S. F., Robbins, A. M., Robbins, M. M., Rossmanith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R. A., Vabø, R., Visser, U. and DeAngelis, D. L. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling 198, 115126. doi: 10.1016/j.ecolmodel.2006.04.023.CrossRefGoogle Scholar
Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J. and Railsback, S. F. (2010). The ODD protocol: a review and first update. Ecological Modelling 221, 27602768. doi: 10.1016/j.ecolmodel.2010.08.019.CrossRefGoogle Scholar
Holland, C. V., O'Lorcain, P., Taylor, M. R. and Kelly, A. (1995). Sero-epidemiology of toxocariasis in school children. Parasitology 110, 535545.CrossRefGoogle ScholarPubMed
Janeway, C. A. Jr. and Travers, P. (1997). Host defense against infection. In ImmunoBiology, The Immune System in Health and Disease. pp. 9-399-51. Current Biology Ltd London, UK; Garland Publishing, New York, USA.Google Scholar
Jansen, J., vanKnapen, F. Knapen, F., Schreurs, M. and vanWijngaarden, T. Wijngaarden, T. (1993). Toxocara ova in parks and sand-boxes in the city of Utrecht. Tijdschrift voor diergeneeskunde 118, 611614.Google ScholarPubMed
Jarosz, W., Mizgajska-Wiktor, H., Kirwan, P., Konarski, J., Rychlicki, W. and Wawrzyniak, G. (2010). Developmental age, physical fitness and Toxocara seroprevalence amongst lower-secondary students living in rural areas contaminated with Toxocara eggs. Parasitology 137, 5363. pii: S0031182009990874; doi: 10.1017/S0031182009990874.CrossRefGoogle ScholarPubMed
Levin, S. (1999). Fragile Dominion: Complexity and the Commons. Perseus Books, Reading, MA, USA.Google Scholar
Liao, C. W., Sukati, H., D'Lamini, P., Chou, C. M., Liu, Y. H., Huang, Y. C., Chung, M. H., Mtsetfwa, J. S., Jonato, J., Chiu, W. T., Chang, P. W., Du, W. Y., Chan, H. C., Chu, T. B., Cheng, H. C., Su, W. W., Tu, C. C., Cheng, C. Y. and Fan, C. K. (2010). Seroprevalence of Toxocara canis infection among children in Swaziland, southern Africa. Annals of Tropical Medicine and Parasitology 104, 7380. doi: 10.1179/136485910X12607012373795.CrossRefGoogle ScholarPubMed
Lopez, M. L., Martin, G., Chamorro, M. C. and Mario, A. J. (2005). Toxocariasis in children from a subtropical region. Medicina (B Aires) 65, 226230.Google ScholarPubMed
Magnaval, J. F., Michault, A., Calon, N. and Charlet, J. P. (1994). Epidemiology of human toxocariasis in La Reunion. Transactions of the Royal Society of Tropical Medicine and Hygiene 88, 531533.CrossRefGoogle ScholarPubMed
Magnaval, J. F., Glickman, L. T., Dorchies, P. and Morassin, B. (2001). Highlights of human toxocariasis. Korean Journal of Parasitology 39, 111.CrossRefGoogle ScholarPubMed
Martin, U. O. and Demonte, M. A. (2008). Urban contamination with zoonotic parasites in the central region of Argentina. Medicina (B Aires) 68, 363366.Google ScholarPubMed
Mizgajska, H. (2001). Eggs of Toxocara spp. in the environment and their public health implications. Journal of Helminthology 75, 147151. pii: S0022149X0100021X.Google ScholarPubMed
Mizgajska-Wiktor, H. and Uga, S. (2006). Exposure and environmental contamination. In Toxocara: The Enigmatic Parasite (ed. Holland, C. V. and Smith, H. V.), pp. 211227. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Muradian, V., Gennari, S. M., Glickman, L. T. and Pinheiro, S. R. (2005). Epidemiological aspects of visceral larva migrans in children living at Sao Remo Community, Sao Paulo (SP), Brazil. Veterinary Parasitology 134, 9397. pii: S0304-4017(05)00317-1; doi: 10.1016/j.vetpar.2005.05.060.CrossRefGoogle ScholarPubMed
Nagakura, K., Tachibana, H., Kaneda, Y. and Kato, Y. (1989). Toxocariasis possibly caused by ingesting raw chicken. Brazilian Journal of Infectious Diseases 160, 735736.CrossRefGoogle ScholarPubMed
O'Lorcain, P. (1995). The effects of freezing on the viability of Toxocara canis and T. cati embryonated eggs. Journal of Helminthology 69, 169171.CrossRefGoogle Scholar
Peel, M. C., Finlayson, B. L. and McMahon, T. A. (2007). Updated world map of the Köppen–Geiger climate classification. Hydrology and Earth System Sciences 11, 16331644.CrossRefGoogle Scholar
Petzoldt, T. (2003). R as simulation platform in ecological modelling. R News 3, 816.Google Scholar
Pinelli, E., Herremans, T., Harms, M. G., Hoek, D. and Kortbeek, L. M. (2011). Toxocara and Ascaris seropositivity among patients suspected of visceral and ocular larva migrans in the Netherlands: trends from 1998 to 2009. European Journal of Clinical Microbiology and Infectious Diseases 30, 873879. doi: 10.1007/s10096-011-1170-9.CrossRefGoogle ScholarPubMed
Radbruch, A., Muehlinghaus, G., Luger, E. O., Inamine, A., Smith, K. G., Dorner, T. and Hiepe, F. (2006). Competence and competition: the challenge of becoming a long-lived plasma cell. Nature Reviews. Immunology 6, 741750. pii: nri1886; doi: 10.1038/nri1886.CrossRefGoogle ScholarPubMed
Radman, N. E., Archelli, S. M., Fonrouge, R. D., del V Guardis, M. and Linzitto, O. R. (2000). Human toxocarosis. Its seroprevalence in the city of La Plata. Memorias do Instituto Oswaldo Cruz 95, 281285. pii: S0074-02762000000300001.CrossRefGoogle ScholarPubMed
R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Rinaldi, L., Biggeri, A., Carbone, S., Musella, V., Catelan, D., Veneziano, V. and Cringoli, G. (2006). Canine faecal contamination and parasitic risk in the city of Naples (southern Italy). BMC Veterinary Research 2, 29. pii: 1746-6148-2-29; doi: 10.1186/1746-6148-2-29.CrossRefGoogle ScholarPubMed
Rubel, D. and Wisnivesky, C. (2005). Magnitude and distribution of canine fecal contamination and helminth eggs in two areas of different urban structure, Greater Buenos Aires, Argentina. Veterinary Parasitology 133, 339347. pii: S0304-4017(05)00299-2; doi: 10.1016/j.vetpar.2005.06.002.CrossRefGoogle ScholarPubMed
Rubel, D., Zunino, G., Santillan, G. and Wisnivesky, C. (2003). Epidemiology of Toxocara canis in the dog population from two areas of different socioeconomic status, Greater Buenos Aires, Argentina. Veterinary Parasitology 115, 275286. pii: S0304401703001857.CrossRefGoogle ScholarPubMed
Rubinsky-Elefant, G., da Silva-Nunes, M., Malafronte, R. S., Muniz, P. T. and Ferreira, M. U. (2008). Human toxocariasis in rural Brazilian Amazonia: seroprevalence, risk factors, and spatial distribution. American Journal of Tropical Medicine and Hygiene 79, 9398. pii: 79/1/93.CrossRefGoogle ScholarPubMed
Rubinsky-Elefant, G., Hirata, C. E., Yamamoto, J. H. and Ferreira, M. U. (2010). Human toxocariasis: diagnosis, worldwide seroprevalences and clinical expression of the systemic and ocular forms. Annals of Tropical Medicine and Parasitology 104, 323. doi: 10.1179/136485910X12607012373957.CrossRefGoogle ScholarPubMed
Santarem, V. A., Leli, F. N., Rubinsky-Elefant, G. and Giuffrida, R. (2011). Protective and risk factors for toxocariasis in children from two different social classes of Brazil. Revista do Instituto de Medicina Tropical de Sao Paulo 53, 6672. pii: S0036-46652011000200002.CrossRefGoogle ScholarPubMed
Smith, H., Holland, C., Taylor, M., Magnaval, J. F., Schantz, P. and Maizels, R. (2009). How common is human toxocariasis? Towards standardizing our knowledge. Trends in Parasitology 25, 182188. pii: S1471-4922(09)00048-8; doi: 10.1016/j.pt.2009.01.006.CrossRefGoogle Scholar
Soriano, S. V., Pierangeli, N. B., Roccia, I., Bergagna, H. F., Lazzarini, L. E., Celescinco, A., Saiz, M. S., Kossman, A., Contreras, P. A., Arias, C. and Basualdo, J. A. (2010). A wide diversity of zoonotic intestinal parasites infects urban and rural dogs in Neuquen, Patagonia, Argentina. Veterinary Parasitology 167, 8185. pii: S0304-4017(09)00600-1; doi: 10.1016/j.vetpar.2009.09.048.CrossRefGoogle Scholar
Teixeira, C. R., Chieffi, P. P., Lescano, S. A., de Melo Silva, E. O., Fux, B. and Cury, M. C. (2006). Frequency and risk factors for toxocariasis in children from a pediatric outpatient center in southeastern Brazil. Revista do Instituto de Medicina Tropical de Sao Paulo 48, 251255. pii: S0036-46652006000500003.CrossRefGoogle ScholarPubMed
Torgerson, P. R., Rosenheim, K., Tanner, I., Ziadinov, I., Grimm, F., Brunner, M., Shaiken, S., Shaikenov, B., Rysmukhambetova, A. and Deplazes, P. (2009). Echinococcosis, toxocarosis and toxoplasmosis screening in a rural community in eastern Kazakhstan. Tropical Medicine and International Health 14, 341348. pii: TMI2229; doi: 10.1111/j.1365–3156.2009.02229.x.CrossRefGoogle Scholar
Uga, S., Minami, T. and Nagata, K. (1996). Defecation habits of cats and dogs and contamination by Toxocara eggs in public park sandpits. American Journal of Tropical Medicine and Hygiene 54, 122126.CrossRefGoogle ScholarPubMed
Uga, S., Hoa, N. T., Noda, S., Moji, K., Cong, L., Aoki, Y., Rai, S. K. and Fujimaki, Y. (2009). Parasite egg contamination of vegetables from a suburban market in Hanoi, Vietnam. Nepal Medical College Journal 11, 7578.Google ScholarPubMed
Won, K. Y., Kruszon-Moran, D., Schantz, P. M. and Jones, J. L. (2008). National seroprevalence and risk factors for zoonotic Toxocara spp. infection. American Journal of Tropical Medicine and Hygiene 79, 552557. pii: 79/4/552.CrossRefGoogle ScholarPubMed
Supplementary material: File

Kanobana supplementary material 1

Kanobana supplementary material 1

Download Kanobana supplementary material 1(File)
File 15.3 KB
Supplementary material: File

Kanobana supplementary material 2

Kanobana supplementary material 2

Download Kanobana supplementary material 2(File)
File 12.7 KB