Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T23:35:28.641Z Has data issue: false hasContentIssue false

Amylopectin: a major component of the residual body in Cryptosporidium parvum oocysts

Published online by Cambridge University Press:  03 March 2004

J. R. HARRIS
Affiliation:
Institute of Zoology, Johannes Gutenberg-University, D-55099 Mainz, Germany
M. ADRIAN
Affiliation:
Bâtiment de Biologie, Laboratoire d'Analyse Ultrastructurale, Université de Lausanne, CH 1015 Lausanne, Switzerland
F. PETRY
Affiliation:
Institute of Medical Microbiology and Hygiene, Johannes Gutenberg-University, D-55101 Mainz, Germany

Abstract

Amylopectin is used for carbohydrate storage in different life-stages of a number of apicomplexan parasites. We have performed an ultrastructural analysis of amylopectin granules from the oocyst residual body and sporozoites of Cryptosporidium parvum. Amylopectin granules were studied in situ and after isolation from ‘French’ press disrupted parasites, by conventional transmission electron microscopy (TEM) of sectioned oocysts and various negative staining and cryoelectron microscopy techniques. Within the membrane-enclosed oocyst residuum large amylopectin granules (0·1–0·3 μm) can be found besides a characteristic large lipid body and a crystalline protein inclusion. Smaller granules were detected in sectioned sporozoites. Negative staining of isolated amylopectin granules revealed some ultrastructural features not readily visible in sectioned material. The large amylopectin granules had a smooth surface with a ‘ball of string’-like inner structure. Granules isolated from sporozoites were more irregularly shaped and showed a rod-like particulate composition. With the exception of α-amylase, which led to some degree of damage of the surface of the particles, treatment of amylopectin granules with other glycohydrolases had little effect on the overall structure. However, granules adhered to one another. Only when the granules were boiled did the ‘ball of string’ structure gradually dissolve.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ADRIAN, M., DUBOCHET, J., LEPAULT, J. & McDOWALL, A. W. (1984). Cryo-electron microscopy of viruses. Nature, London 308, 3236.CrossRefGoogle Scholar
ADRIAN, M., DUBOCHET, J., FULLER, S. & HARRIS, J. R. (1998). Cryo-negative staining. Micron 29, 145160.CrossRefGoogle Scholar
ALVARES-PELLITERO, P., PALENZUELA, O. & SITJÀ-BOBADILLA, A. (1997). Ultrastructure and cytochemistry of Eimeria sparis (Protozoa: Apicomplexa) stages from the intestine of gilthead sea bream Sparus aurata L. (Pisces: Teleostei). Parasitology Research 83, 126136.CrossRefGoogle Scholar
ATKIN, N. J., CHENG, S. L., ABEYSEKERA, R. M. & ROBARDS, A. W. (1999). Localization of amylose and amylopectin in starch granules using enzyme-gold labelling. Starch/Stärke 51, 163172.3.0.CO;2-F>CrossRefGoogle Scholar
AUGUSTINE, P. C. (1980). Effects of storage time and temperature on amylopectin levels and oocyst production of Eimeria meleagrimitis oocysts. Parasitology 81, 519524.CrossRefGoogle Scholar
BAXBY, D., GETTY, B., BLUNDELL, N. & RATCLIFFE, S. (1984). Recognition of whole Cryptosporidium oocysts in feces by negative staining and electron microscopy. Journal of Clinical Microbiology 19, 566567.Google Scholar
BONNIN, A., DUBREMETZ, J. F. & CAMERLYNCK, P. (1991). Characterization of microneme antigens of Cryptosporidium parvum (Protozoa: Apicomplexa). Infection and Immunity 59, 17031708.Google Scholar
COPPIN, A., DZIERSZINSKI, F., LEGRAND, S., MORTUAIRE, M., FERGUSON, D. & TOMAVO, S. (2003). Developmentally regulated biosynthesis of carbohydrate and storage polysaccharide during differentiation and tissue cyst formation in Toxoplasma gondii. Biochimie 85, 353361.CrossRefGoogle Scholar
FAYER, R., SPEER, C. A. & DUBEY, J. P. (1997). The general biology of Cryptosporidium. In Cryptosporidium and Cryptosporidiosis (ed. Fayer, R.), pp. 141. CRC Press, Boca Raton, Florida.
FAYER, R., TROUT, J. M. & JENKINS, M. C. (1998). Infectivity of Cryptosporidium parvum oocysts stored in water at environmental temperatures. Journal of Parasitology 84, 11651169.CrossRefGoogle Scholar
FERGUSON, D. J., BIRCH-ANDERSEN, A., HUTCHISON, W. M. & SIIM, J. C. (1977). Cytochemical electron microscopy on polysaccharide granules in the endogenous forms of Eimeria brunetti. Acta Pathologica et Microbiologica Scandinavica [B] 85, 241248.CrossRefGoogle Scholar
FERGUSON, D. J. P., BRECHT, S. & SOLDATI, D. (2000). The microneme protein MIC4, or an MIC4-like protein, is expressed within the macrogamete and associated with oocyst wall formation in Toxoplasma gondii. International Journal for Parasitology 30, 12031209.CrossRefGoogle Scholar
HARRIS, J. R. (1997). Negative Staining and Cryoelectron Microscopy: the Thin Film Techniques. Bios Scientific Publishers Ltd, Oxford.CrossRef
HARRIS, J. R. & ADRIAN, M. (1999). Preparation of thin-film frozen-hydrated/vitrified biological specimens for cryoelectron microscopy. In Methods in Molecular Biology, Vol. 117: Electron Microscopy Methods and Protocols (ed. Hajibagheri, N.), pp. 3148. Humana Press Inc., Totowa, NJ, USA.CrossRef
HARRIS, J. R. & PETRY, F. (1999). Cryptosporidium parvum: structural components of the oocyst wall. Journal of Parasitology 85, 839849.CrossRefGoogle Scholar
HARRIS, J. R. & SCHEFFLER, D. (2002). Routine preparation of air-dried negatively stained and unstained specimens on holey carbon support films: a review of applications. Micron 33, 461480.CrossRefGoogle Scholar
HARRIS, J. R., ADRIAN, M. & PETRY, F. (2003). Structure of the Cryptosporidium parvum microneme: a metabolically and osmotically labile apicomplexan organelle. Micron 34, 6578.CrossRefGoogle Scholar
HEISE, A., PETERS, W. & ZAHNER, H. (1999). A monoclonal antibody reacts species-specifically with amylopectin granules of Eimeria bovis merozoites. Parasitology Research 85, 500503.CrossRefGoogle Scholar
JENKINS, M. C., TROUT, J., ABRAHAMSEN, M. S., LANCTO, C. A., HIGGINS, J. & FAYER, R. (2000). Estimating viability of Cryptosporidium parvum oocysts using reverse transcriptase-polymerase chain reaction (RT-PCR) directed at mRNA encoding amyloglucosidase. Journal of Microbiological Methods 43, 97106.CrossRefGoogle Scholar
JENKINS, M., TROUT, J. M., HIGGINS, J., DORSCH, M., VEAL, D. & FAYER, R. (2003). Comparison of tests for viable and infectious Cryptosporidium parvum oocysts. Parasitology Research 89, 15.Google Scholar
KÖHLER, S., DELWICHE, C. F., DENNY, P. W., TILNEY, L. G., WEBSTER, P., WILSON, R. J. M., PALMER, J. D. & ROOS, D. S. (1997). A plastid of probably green algal origin in apicomplexan parasites. Science 275, 14851489.CrossRefGoogle Scholar
McDONALD, V., McCROSSAN, M. V. & PETRY, F. (1995). Localization of parasite antigens in Cryptosporidium parvum-infected epithelial cells using monoclonal antibodies. Parasitology 110, 259268.CrossRefGoogle Scholar
MEDINA, H., BARBOZA, J. M., URDANETA, H., RONDON, M. & JOSHI, N. V. (2001). Morphological investigation of Toxoplasma gondii in vivo by a multiple beam interference microscope. Memórias do Institudo Oswaldo Cruz 96, 983986.CrossRefGoogle Scholar
NAKAI, Y. & OGIMOTO, K. (1989). Amylopectin as an energy source of Eimeria tenella sporozoite infection. In Coccidia and Intestinal Coccidiomorphs, Vth International Coccidiosis Conference, Tours. Colloques de l'INRA, Vol. 49, pp. 129132. INRA, Tours, France.
NORDMARK, T. S. & ZIEGLER, G. R. (2002). Structural features of non-granular spherulitic maize starch. Carbohydrate Research 337, 14671475.CrossRefGoogle Scholar
PETRY, F. & HARRIS, J. R. (1999). Ultrastructure, fractionation and biochemical analysis of Cryptosporidium parvum sporozoites. International Journal for Parasitology 29, 12491260.CrossRefGoogle Scholar
PUTAUX, J.-L., BULEON, A. & CHANZY, H. (2000). Network formation in dilute amylose and amylopectin studied by TEM. Macromolecules 33, 64166422.CrossRefGoogle Scholar
REDUKER, D. W., SPEER, C. A. & BLIXT, J. A. (1985). Ultrastructural changes in the oocyst wall during excystation of Cryptosporidium parvum (Apicomplexa: Eucoccidiorida). Canadian Journal of Zoology 63, 18921896.CrossRefGoogle Scholar
ROBERTS, W. L. & HAMMOND, D. M. (1970). Ultrastructural and cytologic studies of the sporozoites of four Eimeria species. Journal of Protozoology 17, 7686.CrossRefGoogle Scholar
ROBERTS, F., ROBERTS, C. W., JOHNSON, J. J., KYLE, D. E., KRELL, T., COGGINS, J. R., COOMBS, G. H., MILHOUS, W. K., TZIPORI, S., FERGUSON, D. J., CHAKRABARTI, D. & McLEOD, R. (1998). Evidence for the shikimate pathway in apicomplexan parasites. Nature, London 393, 801805.CrossRefGoogle Scholar
RYLEY, J. F., BENTLEY, M., MANNER, D. J. & STARK, J. R. (1969). Amylopectin, the storage polysaccharide of coccidia Eimeria brunetti and E. tenella. Journal of Parasitology 55, 839845.CrossRefGoogle Scholar
SPEER, C. A. & DUBEY, J. P. (2001). Ultrastructure of schizonts and merozoites of Sarcocystis neurona. Veterinary Parasitology 95, 263271.CrossRefGoogle Scholar
SPEER, C. A., CLARK, S. & DUBEY, J. P. (1998). Ultrastructure of the oocysts, sporocysts, and sporozoites of Toxoplasma gondii. Journal of Parasitology 84, 505512.CrossRefGoogle Scholar
SPEER, C. A., DUBEY, J. P., McALLISTER, M. M. & BLIXT, J. A. (1999). Comparative ultrastructure of tachyzoites, bradyzoites, and tissue cysts of Neospora caninum and Toxoplasma gondii. International Journal for Parasitology 29, 15091519.CrossRefGoogle Scholar
STRONG, W. B. & NELSON, R. G. (2000). Preliminary profile of the Cryptosporidium parvum genome: an expressed sequence tag and genome survey sequence analysis. Molecular and Biochemical Parasitology 107, 132.CrossRefGoogle Scholar
TETLEY, L., BROWN, S. M. A., McDONALD, V. & COOMBS, G. H. (1998). Ultrastructural analysis of the sporozoite of Cryptosporidium parvum. Microbiology 144, 32493255.CrossRefGoogle Scholar
WANG, C. C., WEPPELMANN, R. M. & LOPEZ-RAMOS, B. (1975). Isolation of amylopectin granules and identification of amylopectin phosphorylase in the oocysts of Eimeria tenella. Journal of Protozoology 22, 560564.CrossRefGoogle Scholar
ZHAO, X. & DUSZYNSKI, D. W. (2001). Molecular phylogenies suggest the oocyst residuum can be used to distinguish two independent lineages of Eimeria spp. in rodents. Parasitology Research 87, 638643.Google Scholar