Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T17:18:22.784Z Has data issue: false hasContentIssue false

Amino acid catabolism in the nematodes Heligmosomoides polygyrus and Panagrellus redivivus 2. Metabolism of the carbon skeleton

Published online by Cambridge University Press:  06 April 2009

Barbara D. Grantham
Affiliation:
Department of Zoology, University College of Wales, Aberystwyth, Dyfed SY23 3DA
J. Barrett
Affiliation:
Department of Zoology, University College of Wales, Aberystwyth, Dyfed SY23 3DA

Summary

All of the enzymes of proline catabolism were present in Heligmosomoides polygyrus and Panagrellus redivivus and the activities were, in general, similar to those found in rat liver. Both nematodes were also shown to be able to catabolize the branched-chain amino acids leucine, isoleucine and valine, by pathways similar to those found in mammalian liver. There were no significant differences in amino acid catabolism between the animal-parasitic and free-living species of nematode.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aki, K. & Ichihara, A. (1970). Branched-chain amino acid aminotransferase (pig heart mitochondria). In Methods in Enzymology, vol 17A (ed. H., Tabor and Tabor, C. W.), pp. 807–11. New York: Academic Press.Google Scholar
Barrett, J. & Körting, W. (1977). Lipid catabolism in the plerocercoids of Schistocephalus solidus (Cestoda: Pseudophyllidea). International Journal for Parasitology 7, 419–22.CrossRefGoogle Scholar
Barrett, J., Ward, C. W. & Fairbairn, D. (1970). The glyoxylate cycle and the conversion of triglycerides to carbohydrates in developing eggs of Ascaris lumbricoides. Comparative Biochemistry and Physiology 35, 577–86.CrossRefGoogle Scholar
Connelly, J. L., Danner, D. J. & Bowden, J. A. (1970). α-Ketoisocaproic acid or α-keto-β-methylvaleric acid dehydrogenase (beef liver). In Methods in Enzymology, vol. 17 A (ed. H., Tabor and Tabor, C. W.), pp. 818–22. New York: Academic Press.Google Scholar
Coon, M. J. (1962). Enzymes of isovaleryl CoA metabolism. I. β-MethylcrotonylCoA carboxylase from liver. In Methods in Enzymology vol. 5, (ed. Colowick, S. P. and Kaplan, N. O.), pp. 896900. New York: Academic Press.Google Scholar
Coon, M. J. & Robinson, W. G. (1962). Enzymes of branched-chain amino acid metabolism (β-hydroxyisobutyric dehydrogenase). In Methods in Enzymology, vol. 5 (ed. Colowick, S. P. and Kaplan, N. O.), pp. 453–7. New York: Academic Press.Google Scholar
Daugherty, J. W. (1952). Intermediary protein metabolism in helminths. 1. Transminase reactions in Fasciola hepatica. Experimental Parasitology 1, 331–8.CrossRefGoogle Scholar
Ertel, J. & Isseroff, H. (1974). Proline in fascioliasis. 1. Comparative activities of ornithine-δ-transaminase and proline oxidase in Fasciola and in mammalian livers. Journal of Parasitology 60, 574–7.CrossRefGoogle Scholar
Fisher, F. M. & Starling, J. M. (1970). The metabolism of l-valine by Calliobothrium verticillatum (Cestoda: tetraphyllidea) identification of α-ketoisovaleric acid. Journal of Parasitology 56, 103–7.CrossRefGoogle Scholar
Goldberg, M., Flescher, E. & Lengy, J. (1979). Schistosoma mansoni: partial purification and properties of ornithine-δ-transaminase. Experimental Parasitology 47, 333–41.CrossRefGoogle ScholarPubMed
Grantham, B. D. & Barrett, J. (1986). Amino acid catabolism in the nematodes Heligomosoides polygyrus and Panagrellus redivivus. 1. Removal of the amino group. Parasitology 93, 481–93.CrossRefGoogle ScholarPubMed
Hoskings, D. D. (1969). Butyryl-CoA dehydrogenase from monkey liver. In Methods in Enzymology, vol. 14, (ed. Lowenstein, J. M.), pp. 110–14. New York: Academic Press.Google Scholar
Isseroff, H. & Ertel, J. C. (1976). Proline in fascioliasis: III. Activities of pyrroline-5-carboxylic acid reductase and pyrroline-5-carboxylic acid dehydrogenase in Fasciola. International Journal for Parasitology 6, 183–8.CrossRefGoogle ScholarPubMed
Kleschinova, E. A. (1980). The activity of aminotransferases in the insect nematode Neoaplectana glaseri. Byulleten' Vsesoyuznogo Instituta Gel'mintologii im. K.I. Skryabina 25, 1923.Google Scholar
Körting, W. & Barrett, J. (1977). Carbohydrate catabolism in the plerocercoids of Schistocephalus solidus (Cestoda: Pseudophyllidea). International Journal for Parasitology 7, 411–17.CrossRefGoogle Scholar
Lahoud, H., Prichard, R. K., McManus, W. R. & Schofield, P. J. (1971). The dissimilation of leucine, isoleucine and valine to volatile fatty acids by adult Fasciola hepatica. International Journal for Parasitology 1, 223–33.CrossRefGoogle ScholarPubMed
Meister, A. (1951). Studies on D- and l-α-keto-β-methylvaleric acids. Journal of Biological Chemistry 190, 269–76.CrossRefGoogle Scholar
Mezl, V. A. & Knox, W. E. (1976). Properties and analysis of a stable derivative of pyrroline-5-carboxylic acid for use in metabolic studies. Analytical Biochemistry 74, 430–40.CrossRefGoogle ScholarPubMed
Robinson, W. G. & Coon, M. J. (1963). Synthesis of malonicsemialdehyde, β-hydroxypropionate and β-hydroxyisobutyrate. In Methods in Enzymology, vol. 6 (ed. Colowick, S. P. and Kaplan, N. O.), pp. 549–53. New York: Academic Press.Google Scholar
Singh, G. & Srivastava, V. M. L. (1983). Metabolism of amino acids in Ascaridia galli: transamination. Zeitschrift für Parasitenkunde 69, 783–8.CrossRefGoogle ScholarPubMed
Stadtman, E. R. (1957). Preparation and assay of acyl coenzyme A and other thiol esters: use of hydroxylamine. In Methods in Enzymology, vol. 3 (ed. Colowick, S. P. and Kaplan, N. O.), pp. 931–41. New York: Academic Press.Google Scholar
Stegink, L. D. & Coon, M. J. (1970). β-Hydroxy-β-methylglutaryl-CoA cleavage enzyme (bovine liver). In Methods in Enzymology, vol. 17A (ed. H., Tabor and Tabor, C. W.), pp. 823–9. New York: Academic Press.Google Scholar
Strassman, M. & Ceci, L. (1969). Fluorimetric assay of malic acid and its α-substituted derivatives. In Methods in Enzymology, vol. 13 (ed. Lowenstein, J. M.), pp. 526–8. New York: Academic Press.Google Scholar
Tietz, A. & Ochoa, S. (1962). Propionyl CoA carboxylase from pig heart. In Methods in Enzymology, vol. 5 (ed. Colowick, S. P. and Kaplan, N. O.), pp. 570–5. New York: Academic Press.Google Scholar
Walker, P. G. (1954). A colorimetric method for the estimation of acetoacetate. Biochemical Journal 58, 699704.CrossRefGoogle ScholarPubMed
Warren, L. G., Lushbaugh, W. B. & Roy, M. J. (1970). Energy metabolism of Ancylostoma caninum. Journal of Parasitology 56, 360–1.Google Scholar