Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T09:02:44.376Z Has data issue: false hasContentIssue false

Alternative NADH dehydrogenase (NDH2): intermembrane-space-facing counterpart of mitochondrial complex I in the procyclic Trypanosoma brucei

Published online by Cambridge University Press:  30 October 2012

ZDENĚK VERNER
Affiliation:
Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic Department of Biochemistry, Comenius University, Bratislava, Slovakia
INGRID ŠKODOVÁ
Affiliation:
Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic Department of Biochemistry, Comenius University, Bratislava, Slovakia
SIMONA POLÁKOVÁ
Affiliation:
Department of Zoology, DAPHNE ČR – Institute of Applied Ecology, České Budějovice (Budweis), Czech Republic
VLADISLAVA ĎURIŠOVÁ-BENKOVIČOVÁ
Affiliation:
Department of Biochemistry, Comenius University, Bratislava, Slovakia
ANTON HORVÁTH
Affiliation:
Department of Biochemistry, Comenius University, Bratislava, Slovakia
JULIUS LUKEŠ*
Affiliation:
Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
*
*Corresponding author: Biology Centre, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic. Tel: +420 387 775 416. Fax: +420 385 310 388. E-mail: [email protected]

Summary

The respiratory chain of the procyclic stage of Trypanosoma brucei contains the standard complexes I through IV, as well as several alternative enzymes contributing to electron flow. In this work, we studied the function of an alternative NADH : ubiquinone oxidoreductase (NDH2). Depletion of target mRNA was achieved using RNA interference (RNAi). In the non-induced and RNAi-induced cell growth, membrane potential change, alteration in production of reactive oxygen species, overall respiration, enzymatic activities of complexes I, III and/or IV and distribution of NADH : ubiquinone oxidoreductase activities in glycerol gradient fractions were measured. Finally, respiration using different substrates was tested on digitonin-permeabilized cells. The induced RNAi cell line exhibited slower growth, decreased mitochondrial membrane potential and lower sensitivity of respiration to inhibitors. Mitochondrial glycerol-3-phosphate dehydrogenase was the only enzymatic activity that has significantly changed in the interfered cells. This elevation as well as a decrease of respiration using NADH was confirmed on digitonin-permeabilized cells. The data presented here together with previously published findings on complex I led us to propose that NDH2 is the major NADH : ubiquinone oxidoreductase responsible for cytosolic and not for mitochondrial NAD+ regeneration in the mitochondrion of procyclic T. brucei.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brand, M. D. (2010). The sites and topology of mitochondrial superoxide production. Experimental Gerontology 45, 466472. doi: 10.1016/j.exger.2010.01.003.CrossRefGoogle ScholarPubMed
Carranza, J. C., Kowaltowski, A. J., Mendonça, M. A. G., de Oliveira, T. C., Gadelha, F. R. and Zingales, B. (2009). Mitochondrial bioenergetics and redox state are unaltered in Trypanosoma cruzi isolates with compromised mitochondrial complex I subunit genes. Journal of Bioenergetics and Biomembranes 41, 299308. doi: 10.1007/s10863-009-9228-4.CrossRefGoogle ScholarPubMed
Cazzulo, J. J. (1992). Aerobic fermentation of glucose by trypanosomatids. The FASEB Journal 6, 31533161.CrossRefGoogle ScholarPubMed
Čermáková, P., Verner, Z., Man, P., Lukeš, J. and Horváth, A. (2007). Characterization of the NADH:ubiquinone oxidoreductase (complex I) in the trypanosomatid Phytomonas serpens (Kinetoplastida). The FEBS Journal 274, 31503158. doi: 10.1111/j.1742-4658.2007.05847.x.CrossRefGoogle ScholarPubMed
Chaudhuri, M., Ajayi, W., Temples, S. and Hill, G. C. (1995). Identification and partial purification of a stage-specific 33 kDa mitochondrial protein as the alternative oxidase of the Trypanosoma brucei brucei bloodstream trypomastigotes. The Journal of Eukaryotic Microbiology 42, 467472. doi: 10.1111/j.1550-7408.1995.tb05892.x.CrossRefGoogle ScholarPubMed
Clarkson, A. B. Jr, Bienen, E. J., Pollakis, G. and Grady, R. W. (1989). Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a a plant-like alternative oxidase. The Journal of Biological Chemistry 264, 1777017776.CrossRefGoogle Scholar
Coustou, V., Biran, M., Breton, M., Guegan, F., Riviére, L., Plazzoles, N., Nolan, D., Barret, M. P., Franconi, J. M. and Bringaud, F. (2008). Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei. The Journal of Biological Chemistry 283, 1634216354. doi: 10.1074/jbc.M709592200.CrossRefGoogle ScholarPubMed
Ebikeme, C., Hubert, J., Biran, M., Gouspillou, G., Morand, P., Plazolles, N., Guegan, F., Diolez, P., Franconi, J.-M., Portais, J.-C. and Bringaud, F. (2010). Ablation of succinate production from glucose metabolism in the procyclic trypanosomes induces metabolic switches to the glycerol 3-phosphate/dihydroxyacetone phosphate shuttle and to proline metabolism. The Journal of Biological Chemistry 285, 3231232324. doi: 10.1074/jbc.M110.124917.CrossRefGoogle Scholar
Fang, J. and Beattie, D. S. (2002). Novel FMN-containing rotenone-insensitive NADH dehydrogenase from Trypanosoma brucei mitochondria: isolation and characterization. Biochemistry 41, 30653072. doi: 10.1021/bi015989w.CrossRefGoogle ScholarPubMed
Fang, J. and Beattie, D. S. (2003). Identification of a gene encoding a 54 kDa alternative NADH dehydrogenase in Trypanosoma brucei. Molecular and Biochemical Parasitology 127, 7377. doi: 10.1016/S0166-6851(02)00305-5.CrossRefGoogle ScholarPubMed
Galkin, A. and Brandt, U. (2005). Superoxide radical formation by pure complex I (NADH: Ubiquinone oxidoreductase) from Yarrowia lipolytica. The Journal of Biological Chemistry 280, 3012930135. doi: 10.1074/jbc.M504709200.CrossRefGoogle ScholarPubMed
Gneiger, E. (2011). Mitochondrial Pathways and Respiratory Control. 2nd Edn. OROBOROS MiPNet Publications, Innsbruck, Austria.Google Scholar
Gnipová, A., Panicucci, B., Paris, Z., Verner, Z., Horváth, A., Lukeš, J. and Zíková, A. (2012). Disparate phenotypic effects from the knockdown of various Trypanosoma brucei cytochrome c oxidase subunits. Molecular and Biochemical Parasitology 184, 9098. doi: 10.1016/j.molbiopara.2012.04.013.CrossRefGoogle ScholarPubMed
Guerra, D. G., Decottignies, A., Bakker, B. M. and Michels, P. A. M. (2006). The mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase of Trypanosomatidae and the glycosomal redox balance of insect stages of Trypanosoma brucei and Leishmania spp. Molecular and Biochemical Parasitology 149, 155169. doi: 10.1016/j.molbiopara.2006.05.006.CrossRefGoogle ScholarPubMed
Hashimi, H., Zíková, A., Panigrahi, A. K., Stuart, K. D. and Lukeš, J. (2008). TbRGG1, an essential protein involved in kinetoplastid RNA metabolism that is associated with a novel multiprotein complex. RNA 14, 970980. doi: 10.1261/rna.888808.CrossRefGoogle ScholarPubMed
Horváth, A., Horáková, E., Dunajčíková, P., Verner, Z., Pravdová, E., Šlapetová, I., Cuninková, L. and Lukeš, J. (2005). Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei. Molecular Microbiology 58, 116130. doi: 10.1111/j.1365-2958.2005.04813.x.CrossRefGoogle Scholar
Kerscher, S., Dröse, S., Zwicker, K., Zickermann, V. and Brandt, U. (2002) Yarrowia lipolytica, a yeast genetic system to study mitochondrial complex I. Biochimica et Biophysica Acta 1555, 8391. doi: 10.1016/S0005-2728(02)00259-1.CrossRefGoogle ScholarPubMed
Maslov, D. A., Zíková, A., Kyselová, I. and Lukeš, J. (2002). A putative novel nuclear-encoded subunit of the cytochrome c oxidase complex in trypanosomatids. Molecular and Biochemical Parasitology 125, 113125. doi: 10.1016/S0166-6851(02)00235-9.CrossRefGoogle ScholarPubMed
Nawathean, P. and Maslov, D. A. (2000). The absence of genes for cytochrome c oxidase and reductase subunits in maxicircle kinetoplast DNA of the respiration-deficient plant trypanosomatid Phytomonas serpens. Current Genetics 38, 95103. doi: 10.1007/s002940000135.CrossRefGoogle ScholarPubMed
Ott, M., Gogvadze, V., Orrenius, S. and Zhivotovsky, B. (2007). Mitochondria, oxidative stress and cell death. Apoptosis 12, 913922. doi: 10.1007/s10495-007-0756-2.CrossRefGoogle ScholarPubMed
Riviére, L., van Weelden, S. W., Glass, P., Vegh, P., Coustou, V., Biran, M., van Hellemond, J. J., Bringaud, F., Tielens, A. G. and Boshart, M. (2004). Acetyl:succinate CoA-transferase in procyclic Trypanosoma brucei. Gene identification and role in carbohydrate metabolism. The Journal of Biological Chemistry 279, 4533745346. doi: 10.1074/jbc.M407513200.CrossRefGoogle ScholarPubMed
Soole, K. L. and Menz, R. I. (1995). Functional molecular aspects of the NADH dehydrogenases of plant mitochnondria. Journal of Bioenergetics and Biomembranes 27, 397406. doi: 10.1007/BF02110002.CrossRefGoogle Scholar
Surve, S., Heestand, M., Panicucci, B., Schnaufer, A. and Parsons, M. (2011). Enigmatic presence of mitochondrial complex I in Trypanosoma brucei bloodstream forms. Eukaryotic Cell 11, 183193. doi: 10.1128/EC.05282-11.CrossRefGoogle ScholarPubMed
Tielens, A. G. M. and van Hellemond, J. J. (2009). Surprising variety in energy metabolism within Trypanosomatidae. Trends in Parasitology 25, 482490. doi:10.1016/j.pt.2009.07.007.CrossRefGoogle ScholarPubMed
Turrens, J. F. (1989). The role of succinate in the respiratory chain of Trypanosoma brucei procyclic trypomastigotes. Biochemical Journal 259, 363368.CrossRefGoogle ScholarPubMed
Verner, Z., Čermáková, P., Škodová, I., Kriegová, E., Horváth, A. and Lukeš, J. (2011). Complex I (NADH:ubiquinone oxidoreductase) is active in but non-essential for procyclic Trypanosoma brucei. Molecular and Biochemical Parasitology 175, 196200. doi: 10.1016/j.molbiopara.2010.11.003.CrossRefGoogle ScholarPubMed
Vondrušková, E., van den Burg, J., Zíková, A., Ernst, N. L., Stuart, K., Benne, R. and Lukeš, J. (2005). RNA Interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. The Journal of Biological Chemistry 280, 24292438. doi: 10.1074/jbc.M405933200.CrossRefGoogle ScholarPubMed
van Weelden, S. W., van Hellemond, J. J., Opperdoes, F. R. and Tielens, A. G. (2005). New functions for parts of the Krebs cycle in procyclic Trypanosoma brucei, a cycle not operating as a cycle. The Journal of Biological Chemistry 280, 1245112460. doi: 10.1074/jbc.M412447200.CrossRefGoogle Scholar
Wickstead, B., Ersfeld, K. and Gull, K. (2002). Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Molecular and Biochemical Parasitology 125, 211216. doi: 10.1016/S0166-6851(02)00238-4.CrossRefGoogle Scholar
Supplementary material: File

Verner Supplementary Material

Appendix

Download Verner Supplementary Material(File)
File 43.1 KB