Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T17:16:30.310Z Has data issue: false hasContentIssue false

Alpha 2 giardin is an assemblage A-specific protein of human infective Giardia duodenalis

Published online by Cambridge University Press:  22 October 2008

R. F. L. STEUART*
Affiliation:
WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infection and Environmental Biotechnology CRC, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, 6150, Western Australia
R. O'HANDLEY
Affiliation:
WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infection and Environmental Biotechnology CRC, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, 6150, Western Australia
R. J. LIPSCOMBE
Affiliation:
Proteomics International Pty Ltd, PO Box 6064, East Perth 6892, Western Australia
R. A. LOCK
Affiliation:
Proteomics International Pty Ltd, PO Box 6064, East Perth 6892, Western Australia
R. C. A. THOMPSON
Affiliation:
WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infection and Environmental Biotechnology CRC, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, 6150, Western Australia
*
*Corresponding author: School of Veterinary and Biomedical Science, Murdoch University, Murdoch, 6150, Western Australia. Tel: +61 8 9360 2690. E-mail: [email protected]

Summary

Of the 7 genetic assemblages of the parasite Giardia duodenalis only 2 (A and B) are known to cause infections in humans. These assemblages have been characterized in detail at the genomic level but few studies have examined differences in the proteins expressed. Employing one and two-dimensional PAGE we have identified an assemblage A-specific protein of human infective G. duodenalis; alpha 2 giardin. The protein difference was evident using both electrophoretic techniques. Alpha 2 giardin is known to be a structural protein and associates with the caudal flagella and the plasma membrane; however, its exact function is unknown. Although several proteins unique to assemblage B were also observed, we were unable to identify these proteins due to a lack of genomic data available for assemblage B isolates. Together, these proteins represent distinct phenotypic differences between the human infective assemblages of G. duodenalis and support the need to revise the taxonomy of this parasite.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G. M., Carnemolla, B., Orecchia, P., Zardi, P. and Righetti, P. G. (2004). Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25, 13271333.Google Scholar
Capon, A. G., Upcroft, J. A., Boreham, P. F. L., Cottis, L. E. and Bundesen, P. G. (1989). Similarities of Giardia antigens derived from human and animal sources. International Journal for Parasitology 19, 9198.Google Scholar
Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R. and Weiss, W. (2000). The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 10371053.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Gorg, A., Weiss, W. and Dunn, M. J. (2004). Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 36653685.Google Scholar
Gygi, S. P., Rochon, Y., Franza, B. R. and Aebersold, R. (1999). Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology 19, 17201730.Google Scholar
Haque, R., Roy, S., Kabir, M., Stroup, S. E., Mondal, D. and Houpt, E. R. (2005). Giardia assembalge A infection and diarrhoea in Bangladesh. Journal of Infectious Diseases 192, 21712173.CrossRefGoogle ScholarPubMed
Homan, W. L. and Mank, T. G. (2001). Human giardiasis: genotype linked differences in clinical symptomatology. International Journal for Parasitology 31, 822826.Google Scholar
Hopkins, R. M., Constantine, C. C., Groth, D. A., Wetherall, J. D., Reynoldson, J. A. and Thompson, R. C. (1999). PCR-based DNA fingerprinting of Giardia duodenalis isolates using the intergenic rDNA spacer. Parasitology 118, 531539.Google Scholar
Keister, D. B. (1983). Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 487488.Google Scholar
Lalle, M., Salzano, A., Crescenzi, M. and Pozio, E. (2006). The Giardia duodenalis 14-3-3 protein is post-translationally modified by phosphorylation and polglycylation of the C-terminal tail. Journal of Biological Chemistry 281, 51375148.Google Scholar
Mayrhofer, G., Andrews, R. H., Ey, P. L. and Chilton, N. B. (1995). Division of Giardia isolates from humans into two genetically distinct assemblages by electrophoretic analysis of enzymes encoded at 27 loci and comparison with Giardia muris. Parasitology 111, 1117.CrossRefGoogle Scholar
Meloni, B. P., Lymbery, A. J. and Thompson, R. C. (1988). Isoenzyme electrophoresis of 30 isolates of Giardia from humans and felines. American Journal of Tropical Medicine and Hygiene 38, 6573.Google Scholar
Monis, P., Andrews, R., Mayrhofer, G. and Ey, P. (1999). Molecular systematics of the parasitic protozoan Giardia intestinalis. Molecular Biology and Evolution 16, 11351144.Google Scholar
Moore, G. W., Sogandares-Bernal, F., Dennis, M. V., Root, D. M., Beckwith, D. and Van Voorhis, D. (1982). Characterization of Giardia lamblia trophozoite antigens using polyacrylamide gel electrophoresis, high-performance liquid chromatography, and enzyme-labelled immunosorbent assay. Veterinary Parasitology 10, 229237.CrossRefGoogle Scholar
Morgan, R. O. and Fernandez, M. P. (1995). Molecular phylogeny of annexins and identification of a primitive homologue in Giardia lamblia. Molecular Biology and Evolution 12, 967979.Google Scholar
Morrison, H. G., McArthur, A. G., Gillin, F. D., Aley, S. B., Adam, R. D., Olsen, G. J., Best, A. A., Cande, W. Z., Chen, F., Cipriano, M. J., Davids, B. J., Dawson, S. C., Elmendorf, H. G., Hehl, A. B., Holder, M. E., Huse, S. M., Kim, U. U., Lasek-Nesselquist, E., Manning, G., Nigam, A., Nixon, J. E. J., Palm, D., Passamaneck, N. E., Prabhu, A., Reich, C. I., Reiner, D. S., Samuelson, J., Svard, S. and Sogin, M. L. (2007). Genomic minimialism in the early diverging intestinal parasite Giardia lamblia. Science 317, 19211926.Google Scholar
Moss, D. M., Visvesvara, G. S., Mathews, H. M. and Ware, D. A. (1992). Isoenzyme comparison of axenic Giardia lamblia strains. Journal of Protozoology 39, 559564.Google Scholar
Nash, T. E. and Keister, D. B. (1985). Differences in excretory-secretory products and surface antigens among 19 isolates of Giardia. Journal of Infectious Diseases 152, 11661171.Google Scholar
Palm, J. E., Weiland, M. E., Griffiths, W. J., Ljungstrom, I. and Svard, S. G. (2003). Identification of immunoreactive proteins during acute human giardiasis. Journal of Infections Disease 187, 18491859.Google Scholar
Perkins, D. N., Pappin, D. J. C., Creasy, D. M. and Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 35513567.Google Scholar
Read, C., Walters, J., Robertson, I. D. and Thompson, R. C. A. (2002). Correlation between genotype of Giardia duodenalis and diarrhoea. International Journal for Parasitology 32, 229231.Google Scholar
Sahaqun, J., Cavel, A., Goni, P., Seral, C., Llorente, M. T., Castillo, F. J., Capilla, S., Arias, A. and Gomez-Lus, R. (2008). Correlation between the presence of symptoms and the Giardia duodenalis genotype. European Journal of Clinical Microbiology and Infectious Diseases 27, 8183.Google Scholar
Siles-Lucas, M. D. M. and Gottstein, B. (2003). The 14-3-3 protein: a key molecule in parasites as in other organisms. Trends in Parasitology 19, 575581.Google Scholar
Smith, P. D., Gillin, F. D., Kaushal, N. A. and Nash, T. E. (1982). Antigenic analysis of Giardia lamblia from Afghanistan, Puerto Rico, Ecuador, and Oregon. Infection and Immunity 36, 714719.Google Scholar
Thompson, R. C. A. (2004). The zoonotic significance and molecular epidemiology of Giardia and giardiasis. Veterinary Parasitology 126, 1535.Google Scholar
Weiland, M. E., McCarthur, A. G., Morrison, H. G., Sogin, M. L. and Svard, S. G. (2005). Annexin-like alpha giardins: a new cytoskeletal gene family in Giardia lamblia. International Journal for Parasitology 35, 617626.Google Scholar
Wenman, W. M., Meuser, R. U. and Wallis, P. M. (1986). Antigenic analysis of Giardia duodenalis strains isolated from Alberta. Canadian Journal of Microbiology 32, 926929.Google Scholar