Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T20:38:01.172Z Has data issue: false hasContentIssue false

Advances in the sequencing of the genome of the adenophorean nematode Trichinella spiralis

Published online by Cambridge University Press:  04 July 2008

M. Mitreva*
Affiliation:
Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA
D. P. Jasmer
Affiliation:
Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
*
*Corresponding author: Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA. Tel: 001 314 286 2005. Fax: 001 314 286 1810. E-mail: [email protected]

Summary

The adenophorean nematodes are evolutionarily distant from other species in the phylum Nematoda. Interspecific comparisons of predicted proteins have supported such an ancient divergence. Accordingly, Trichinella spiralis represents a basal nematode representative for genome sequencing focused on gaining a deeper insight into the evolutionary biology of nematodes. In addition, molecular characteristics that are conserved across the phylum could be of great value for control strategies with broad application. In this review, we describe and summarize progress that has been made on the sequencing and analysis of the T. spiralis genome. The genome sequence was used in preliminary analyses for the investigation of specific questions relating to the biology of T. spiralis and, more generally, to parasitic nematodes. For instance, we evaluated an unusually large DNase II-like protein family, predicted proteins of prospective interest in the parasite-host muscle cell interaction, anthelmintic targets and prospective intestinal genes, the encoded proteins (potentially) linked to immunological control against other nematodes. The results are discussed in relation to characteristics that are broadly conserved among evolutionary distant nematodes. The results lead to expectations that this genome sequence will contribute to advances in research on T. spiralis and other parasitic nematodes.

Type
Review Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bao, Z. and Eddy, S. R. (2002). Automated de novo identification of repeat sequence families in sequenced genomes. Genome Research 12, 11521155.CrossRefGoogle ScholarPubMed
Besmer, J. and Borodovsky, M. (2005). GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nuceic Acids Research 33, W451W454.CrossRefGoogle Scholar
Birney, E., Clamp, M. and Durbin, R. (2004). GeneWise and Genomewise. Genome Research 14, 988995.CrossRefGoogle ScholarPubMed
Blaxter, M. L., De Ley, P., Garey, J. R., Liu, L. X., Scheldeman, P., Vierstraete, A., Vanfleteren, J. R., Mackey, L. Y., Dorris, M., Frisse, L. M., Vida, J. T. and Thomas, W. K. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature, London 392, 7175.CrossRefGoogle ScholarPubMed
Campbell, W. C. and Denham, D. A. (1983). Chemotherapy. In Trichinella and Trichinosis (ed. Campbell, W. C.), pp. 335366. Plenum Press, New York.CrossRefGoogle Scholar
Carlisle, M. S., McGregor, D. D. and Appleton, J. A. (1991). The role of the antibody Fc region in rapid expulsion of Trichinella spiralis in suckling rats. Immunology 74, 552558.Google ScholarPubMed
Clamp, M., Andrews, D., Barker, D., Bevan, P., Cameron, G., Chen, Y., Clark, L., Cox, T., Cuff, J., Curwen, V., Down, T., Durbin, R., Eyras, E., Gilbert, J., Hammond, M., Hubbard, T., Kasprzyk, A., Keefe, D., Lehvaslaiho, H., Iyer, V., Melsopp, C., Mongin, E., Pettett, R., Potter, S., Rust, A., Schmidt, E., Searle, S., Slater, G., Smith, J., Spooner, W., Stabenau, A., Stalker, J., Stupka, E., Ureta-Vidal, A., Vastrik, I. and Birney, E. (2003). Ensembl 2002: accommodating comparative genomics. Nucleic Acids Research 31, 3842.CrossRefGoogle ScholarPubMed
Connolly, B., Trenholme, K. and Smith, D. F. (1996). Molecular cloning of a myoD-like gene from the parasitic nematode, Trichinella spiralis. Molecular and Biochemical Parasitology 81, 137149.CrossRefGoogle ScholarPubMed
Denkers, E. Y., Wassom, D. L. and Hayes, C. E. (1990). Characterization of Trichinella spiralis antigens sharing an immunodominant, carbohydrate-associated determinant distinct from phosphorylcholine. Molecular and Biochemical Parasitology 41, 241249.CrossRefGoogle ScholarPubMed
Despommier, D. D. (1983). Biology. In Trichinella and Trichinosis (ed. Campbell, W. C.), pp. 75151. Plenum Press, New York.CrossRefGoogle Scholar
Ding, L., Sabo, A., Berkowicz, N., Meyer, R. R., Shotland, Y., Johnson, M. R., Pepin, K. H., Wilson, R. K. and Spieth, J. (2004). EAnnot: a genome annotation tool using experimental evidence. Genome Research 14, 25032509.CrossRefGoogle ScholarPubMed
Gagliardo, L. F., McVay, C. S. and Appleton, J. A. (2002). Molting, ecdysis, and reproduction of Trichinella spiralis are supported in vitro by intestinal epithelial cells. Infection Immunology 70, 18531859.CrossRefGoogle ScholarPubMed
Gounaris, K. and Selkirk, M. E. (2005). Parasite nucleotide-metabolizing enzymes and host purinergic signalling. Trends in Parasitology 21, 1721.CrossRefGoogle ScholarPubMed
Haehling, E., Niederkorn, J. Y. and Stewart, G. L. (1995). Trichinella spiralis and Trichinella pseudospiralis induce collagen synthesis by host fibroblasts in vitro and in vivo. International Journal for Parasitology 25, 13931400.CrossRefGoogle ScholarPubMed
Huang, X., Yang, S.-P., Chinwalla, A. T., Hillier, L. W., Minx, P., Mardis, E. R. and Wilson, R. K. (2006). Application of a superword array in genome assembly. Nucleic Acids Research 34, 201205.CrossRefGoogle ScholarPubMed
Jasmer, D. P. (1993). Trichinella spiralis infected skeletal muscle cells: arrest in G2/M is associated with the loss of muscle gene expression. Journal of Biological Chemistry 121, 785793.Google Scholar
Jasmer, D. P., Dautova Mitreva, M. and McCarter, J. P. (2004). mRNA sequences for Haemonchus contortus intestinal cathepsin B-like cysteine proteases display an extreme in abundance and diversity compared with other adult mammalian parasitic nematodes. Molecular and Biochemical Parasitology 137, 297305.CrossRefGoogle ScholarPubMed
Jasmer, D. P. and Kwak, D. (2006). Differentiation and fusion of skeletal muscle cells expressing the p43 protein from Trichinella spiralis muscle larvae. Experimental Parasitology 112, 6775.CrossRefGoogle Scholar
Jasmer, D. P., Lahmers, K. and Brown, W. C. (2007). Haemonchus contortus intestine: a prominent source of mucosal antigens. Parasite Immunology 29, 139151.CrossRefGoogle ScholarPubMed
Jasmer, D. P., Perryman, L. E., Conder, G. A., Crow, S. and McGuire, T. (1993). Protective immunity to Haemonchus contortus induced by immunoaffinity isolated antigens that share a phylogenetically conserved carbohydrate gut surface epitope. Journal of Immunology 151, 54505460.CrossRefGoogle Scholar
Jasmer, D. P., Perryman, L. E. and McGuire, T. C. (1996). Haemonchus contortus GA1 antigens: Related, phospholipase C-sensitive, apical gut membrane proteins encoded as a polyprotein and released from the nematode during infection. Proceedings of the National Academy of Sciences, USA 93, 86428647.CrossRefGoogle ScholarPubMed
Jasmer, D. P., Yao, C., Rehman, A. and Johnson, S. (2000). Multiple lethal effects induced by a benzimidazole anthelmintic in the anterior intestine of the nematode Haemonchus contortus. Molecular and Biochemical Parasitology 105, 8190.CrossRefGoogle ScholarPubMed
Jolodar, A., Fischer, P., Buttner, D. W., Miller, D. J., Schmetz, C. and Brattig, N. W. (2004). Onchocerca volvulus: expression and immunolocalization of a nematode cathepsin D-like lysosomal aspartic protease. Experimental Parasitology 107, 145156.CrossRefGoogle ScholarPubMed
Knox, D. P., Redmond, D. L., Newlands, G. F., Skuce, P. J., Pettit, D. and Smith, W. D. (2003). The nature and prospects for gut membrane proteins as vaccine candidates for Haemonchus contortus and other ruminant trichostrongyloids. International Journal for Parasitology 33, 11291137.CrossRefGoogle ScholarPubMed
Knox, D. P. and Smith, W. D. (2001). Vaccination against gastrointestinal nematode parasites of ruminants using gut-expressed antigens. Veterinary Parasitology 100, 2132.CrossRefGoogle ScholarPubMed
Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics 5, 59.CrossRefGoogle ScholarPubMed
Kwa, M. S., Veenstra, J. G., Van Dijk, M. and Roos, M. H. (1995). Beta-tubulin genes from the parasitic nematode Haemonchus contortus modulate drug resistance in Caenorhabditis elegans. Journal of Molecular Biology 246, 500510.CrossRefGoogle ScholarPubMed
Longbottom, D., Redmond, D. L., Russell, M., Liddell, S., Smith, W. D. and Knox, D. P. (1997). Molecular cloning and characterisation of a putative aspartate proteinase associated with a gut membrane protein complex from adult Haemonchus contortus. Molecular and Biochemical Parasitology 88, 6372.CrossRefGoogle ScholarPubMed
MacLea, K. S., Krieser, R. J. and Eastman, A. (2003). A family history of deoxyribonuclease II: surprises from Trichinella spiralis and Burkholderia pseudomallei. Gene 305, 112.CrossRefGoogle ScholarPubMed
Marti, H. P., Murrell, K. D. and Gamble, H. R. (1987). Trichinella spiralis: immunization of pigs with newborn larval antigens. Experimental Parasitology 63, 6873.CrossRefGoogle ScholarPubMed
Martin, R. J. (1997). Modes of action of anthelmintic drugs. Veterinary Journal 154, 1134.CrossRefGoogle ScholarPubMed
Maxam, A. M. and Gilbert, W. (1977). A new method for sequencing DNA. Proceedings of the National Academy of Sciences, USA 74, 560564.CrossRefGoogle ScholarPubMed
Maxam, A. M. and Gilbert, W. (1980). Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in Enzymology 65, 499560.CrossRefGoogle ScholarPubMed
Mitreva, M., Appleton, J., McCarter, J. P. and Jasmer, D. P. (2005). Expressed sequence tags from life cycle stages of Trichinella spiralis: application to biology and parasite control. Veterinary Parasitology 132, 1317.CrossRefGoogle ScholarPubMed
Mitreva, M. and Jasmer, D. P. (2006). Biology and genome of Trichinella spiralis. In Wormbook (ed. Community, T. C. e. R.), pp. 121. doi/10.1895/wormbook.1.124.1, http://www.wormbook.org.Google Scholar
Mitreva, M., Jasmer, D. P., Appleton, J., Martin, J., Dante, M., Wylie, T., Clifton, S. W., Waterston, R. H. and McCarter, J. P. (2004). Gene discovery in the adenophorean nematode Trichinella spiralis: an analysis of transcription from three life cycle stages. Molecular and Biochemical Parasitology 137, 277291.CrossRefGoogle ScholarPubMed
Mitreva, M., Zarlenga, D., McCarter, J. P. and Jasmer, D. P. (2007). Parasitic nematodes – from genomes to control. Veterinary Parasitology 148, 3142.CrossRefGoogle ScholarPubMed
Polvere, R. I., Kabbash, C. A., Capo, V. A., Kadan, I. and Despommier, D. D. (1997). Trichinella spiralis: synthesis of type IV and type VI collagen during nurse cell formation. Experimental Parasitology 86, 191199.CrossRefGoogle ScholarPubMed
Ranjit, N., Jones, M. K., Stenzel, D. J., Gasser, R. B. and Loukas, A. (2006). A survey of the intestinal transcriptomes of the hookworms, Necator americanus and Ancylostoma caninum, using tissues isolated by laser microdissection microscopy. International Journal for Parasitology 36, 701710.CrossRefGoogle ScholarPubMed
Redmond, D. L. and Knox, D. P. (2006). Further protection studies using recombinant forms of Haemonchus contortus cysteine proteinases. Parasite Immunology 28, 213219.CrossRefGoogle ScholarPubMed
Reese, M. G., Hartzell, G., Harris, N. L., Ohler, U., Abril, J. F. and Lewis, S. E. (2000). Genome Annotation Assessment in Drosophila melanogaster. Genome Research 10, 483501.CrossRefGoogle ScholarPubMed
Rehman, A. and Jasmer, D. P. (1998). A tissue specific approach for analysis of membrane and secreted protein antigens from Haemonchus contortus gut and its application to diverse nematode species. Molecular and Biochemical Parasitology 97, 5568.CrossRefGoogle ScholarPubMed
Rehman, A. and Jasmer, D. P. (1999). Defined characteristics of cathepsin B-like proteins from nematodes: inferred functional diversity and phylogenetic relatedness. Molecular and Biochemical Parasitology 102, 297310.CrossRefGoogle Scholar
Robinson, M. W. and Connolly, B. (2005). Proteomic analysis of the excretory-secretory proteins of the Trichinella spiralis L1 larva, a nematode parasite of skeletal muscle. Proteomics 5, 45254532.CrossRefGoogle ScholarPubMed
Salamov, A. A. and Solovyev, V. V. (2000). Ab initio gene finding in Drosophila genomic DNA. Genome Research 10, 516522.CrossRefGoogle ScholarPubMed
Sanger, F., Niklen, S. and Coulson, A. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74, 54635467.CrossRefGoogle ScholarPubMed
Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F. and Petersen, G. B. (1982). Nucleotide sequence of bacteriophage lambda DNA. Journal of Molecular Biology 162, 729773.CrossRefGoogle ScholarPubMed
Searcy, D. G. and MacInnis, A. J. (1970). Measurements by DNA renaturation of the genetic basis of parasitic reduction. Evolution 24, 796806.CrossRefGoogle ScholarPubMed
Smith, S. K., Pettit, D., Newlands, G. F., Redmond, D. L., Skuce, P. J., Knox, D. P. and Smith, W. D. (1999). Further immunization and biochemical studies with a protective antigen complex from the microvillar membrane of the intestine of Haemonchus contortus. Parasite Immunology 21, 187199.CrossRefGoogle ScholarPubMed
Stewart, G. L., Wood, B. and Boley, R. B. (1985). Modulation of host response by Trichinella pseudospiralis. Parasite Immunology 7, 223233.CrossRefGoogle ScholarPubMed
Tcherepanova, I., Bhattacharyya, L., Rubin, C. S. and Freedman, J. H. (2000). Aspartic proteases from the nematode Caenorhabditis elegans. Structural organization and developmental and cell-specific expression of asp-1. Journal of Biological Chemistry 275, 2635926369.CrossRefGoogle ScholarPubMed
Vassilatis, D. M., Despommier, D., Misek, D., Polvere, R., Gold, A. M. and Van Der Ploeg, L. H. T. (1992). Analysis of a 43-kDa glycoprotein from the intracellular parasitic nematode Trichinella spiralis. Journal of Biological Chemistry 267, 1845918465.CrossRefGoogle ScholarPubMed
Williamson, A. L., Lecchi, P., Turk, B. E., Choe, Y., Hotez, P. J., McKerrow, J. H., Cantley, L. C., Sajid, M., Craik, C. S. and Loukas, A. (2004). A multi-enzyme cascade of hemoglobin proteolysis in the intestine of blood-feeding hookworms. Journal of Biological Chemistry 279, 3595035957.CrossRefGoogle ScholarPubMed
Williamson, S.M., Walsh, T. K. and Wolstenholme, A. J. (2007). The cys-loop ligand-gated ion channel gene family of Brugia malayi and Trichinella spiralis: a comparison with Caenorhabditis elegans. Invertebrate Neuroscience 7, 219226.CrossRefGoogle ScholarPubMed
Zarlenga, D. S., Rosenthal, B. M., La Rosa, G., Pozio, E. and Hoberg, E. P. (2006). Post-Miocene expansion, colonization, and host switching drove speciation among extant nematodes of the archaic genus Trichinella. Proceedings of the National Academy of Sciences, USA 103, 73547359.CrossRefGoogle ScholarPubMed