Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T03:24:49.388Z Has data issue: false hasContentIssue false

Activities of glycogen phosphorylase, alanine aminotransferase and aspartate aminotransferase in adult worms of Litomosoides carinii recovered from pyridoxine deficient cotton rats (Sigmodon hispidus)

Published online by Cambridge University Press:  26 March 2010

M. A. Beg
Affiliation:
Science Research Institute and Department of Biological Sciences, University of Salford, Salford M5 4WT
J. L. Fistein
Affiliation:
St Mary's Hospital Medical School, London W2 1UF
G. A. Ingram
Affiliation:
Science Research Institute and Department of Biological Sciences, University of Salford, Salford M5 4WT
D. M. Storey
Affiliation:
Science Research Institute and Department of Biological Sciences, University of Salford, Salford M5 4WT

Summary

This paper demonstrates that the activities of glycogen phosphorylase (GP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are reduced in adult worms of the filarial nematode Litomosoides carinii recovered from pyri-doxine-deficient cotton rats when compared to worms recovered from pyridoxine-sufficient controls. GP, ALT and AST activities were determined in adult worms L. carinii recovered from cotton rat hosts over a 20-week experimental period. Activities of GP, ALT and AST in the parasite showed a direct correlation with the dietary pyridoxine intake of their host. Throughout the experiment, enzyme activities were significantly lower (P < 0·001) in worms from rats fed a pyridoxine-free diet ad libitum that in worms from rats fed either a stock colony diet, a pyridoxine-free diet ad libitum with daily supplementation of 100 μg pyridoxine or limited amounts of pyridoxine-free diet with daily supplementation of 100 μg pyridoxine. The lower than normal activity of GP, ALT, AST and other enzymes dependent on the biologically active derivative of pyridoxine, the coenzyme pyridoxal-5-phosphate (PLP), interferes with the protein, carbohydrate and lipid metabolism of L. carinii and may in part cause the reduced establishment, development and growth of the parasite in pyridoxine-deficient hosts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beg, M. A., Fistein, J. L. & Storey, D. M. (1995). The host–parasite relationships in pyridoxine (vitamin B6) deficient cotton rats infected with Litomosoides carinii (Nematoda: Filaroidea). Parasitology 111, 111–18.CrossRefGoogle ScholarPubMed
Beg, M. A., Ingram, G. A. & Storey, D. M. (1994). Plasma pyridoxal-5-phosphate levels in vitamin B6 deficient cotton rats during infection with Litomosoides carinii. Journal of Nutritional Immunology 2, 2336.CrossRefGoogle Scholar
Beg, M. A. & Storey, D. M. (1993). Embryogenesis in Litomosoides carinii from pyridoxine deficient cotton rats. Journal of Helminthology 67, 205–22.Google Scholar
Cochary, E. F., Gershoff, S. N. & Sadowski, J. A. (1990). Aging and vitamin B6 depletion. Effects on plasma pyridoxal-S-phosphate and erythrocyte aspartate aminotransferase activity coefficient in rats. American Journal of Clinical Nutrition 51, 446–52.CrossRefGoogle ScholarPubMed
Cochary, E. F., Gershoff, S. N. & Sadowski, J. A. (1991). Effects of vitamin B6 deficiency and aging on pyridoxal-5-phosphate levels and glycogen phosphorylase activity in rats. Journal of Nutritional Biochemistry 2, 131–41.CrossRefGoogle Scholar
Fiske, c. H. & Subbarow, Y. (1925). The colourimetric determination of phosphorus. Journal of Biological Chemistry 66, 375401.CrossRefGoogle Scholar
Frankel, s. (1970). Enzymes. In Gradwohl's Clinical Laboratory Methods and Diagnosis, 7th Edn (ed. Frankel, S., Reitman, S. & Sonnenwirth, A. C. ). St Louis, USA: Mosby Press.Google Scholar
Fukui, T., Kagamiyama, H., Soda, K. & Wada, H. (1991). Enzymes Dependent on Pyridoxal Phosphate and Other Carbonyl Compounds as Cofactors. Oxford: Pergamon Press.Google Scholar
Gupta, K. P., Mukerji, K. & Ghosh, D. K. (1983). Biochemical changes at different stages of Litomosoides carinii infection in albino rats. Indian Journal of Medical Research 77, 329–33.Google ScholarPubMed
Helmreich, E. j. M. (1992). Minireview. How pyridoxal-5-phosphate could function in glycogen phosphorylase catalysis. Biofactors 3, 159–72.Google Scholar
Jayapragasam, M., Bagai, R. C. & Subrahmanyam, D. (1977). The effect of malnutrition and filarial infection in albino rats. Indian Journal of Medical Research 65, 346–52.Google Scholar
Komuniecki, P. R. & Saz, H. j. (1982). The effect of Levamisole on glycogen synthase and the metabolism of Litomosoides carinii. Journal of Parasitology 68, 221–7.CrossRefGoogle Scholar
Krebs, E. G. & Fischer, E. H. (1964). Phosphorylase and related enzymes of glycogen metabolism. Vitamins and Hormones 22, 399–10.CrossRefGoogle ScholarPubMed
Mukherjee, p. & Ghosh, D. K. (1983). Filarial infection: changes in some liver enzymes of albino rats. IRCS Medical Science 11, 817–18.Google Scholar
Mukhopahyay, p. & Ghosh, D. K. (1988). Litomosoides carinii infections: pathophysiological changes in the infected albino rat. International Journal for Parasitology 18, 103–7.Google Scholar
Nelson, N. F. & Saz, H. j. (1982). Effects of Levamisole on glycogen phosphorylase activity of Litomosoides carinii. Journal of Parasitology 68, 1162–3.CrossRefGoogle ScholarPubMed
Platzer, E. G. & Roberts, L. s. (1970). Development physiology of cestodes. Part VII. Vitamin B6 and Hymenolepis diminuta: vitamin levels in the cestode and effects of deficiency on phosphorylase and transaminase activities. Comparative Biochemistry and Physiology 35, 535–52.Google Scholar
Prasad, R., Rao, Y. V. B. G., Mehta, K. & Subrahmanyam, D. (1980a). The effect of thiamine deficiency on filarial infection in albino rats with Litomosoides carinii. International Journal for Parasitology 10, 93–6.CrossRefGoogle ScholarPubMed
Prasad, R., Rao, Y. V. B. G., Sindhu, R. K. & Subrahmanyam, D. (1980b). The effect of pyridoxine deficiency on the infection of albino rats with Litomosoides carinii. Transactions of the Royal Society of Tropical Medicine and Hygiene 74, 459–62.CrossRefGoogle ScholarPubMed
Ramp, T., Bachmann, R. & Kohler, P. (1985). Respiration and energy conservation in the filarial worm Litomosoides carinii. Molecular and Biochemical Parasitology 15, 1120.CrossRefGoogle ScholarPubMed
Ramp, T. & Kohler, P. (1984). Glucose and pyruvate catabolism in Litomosoides carinii. Parasitology 89, 229–4.CrossRefGoogle Scholar
Reitman, s. & Frankel, s. (1957). A colourimetric method for the determination of serum glutamic oxaloacetate and glutamic pyruvate transaminases. American Journal of Clinical Pathology 28, 5663.CrossRefGoogle Scholar
Rosen, F. & Milholland, R. (1960). Effects of pyridoxine depletion on three enzymes requiring pyridoxal phosphate (B6. PO4) as a cofactor. Federation Proceedings 19, 414.Google Scholar
Sani, B. P. & Comley, j. w. c. (1985). Role of retinoids and their binding proteins in filarial parasites and host tissues. Tropical Medicine and Parasitology 36, 20–3.Google ScholarPubMed
Sauberlich, H. E. & Canham, j. E. (1980). Vitamin B6. In Modern Nutrition in Health and Disease, 6th Edn (ed. Goodhart, R. S. & Shils, M. E. ), p. 216. Philadelphia: Lea and Febiger.Google Scholar
Saz, H. j. (1970). Comparative energy metabolism of some parasitic helminths. Journal of Parasitology 56, 634–42.CrossRefGoogle ScholarPubMed
Saz, H. j. (1981). Energy metabolism of parasitic helminths. Adaptations to parasitism. Annual Review of Physiology 43, 324–41.Google Scholar
Srivastava, V. M. L., Chatterjee, R. K., Sen, A. B. & Ghatak, s. (1970). Glycolysis in Litomosoides carinii, the filarial parasite of the cotton rat. Experimental Parasitology 28, 176–85.Google Scholar
Stanton, M. G. (1968). Colourimetric determination of inorganic phosphate in the presence of biological material and adenosine triphosphate. Analytical Biochemistry 22, 2734.Google Scholar
Storey, D. M. (1981). Malnutrition in experimental filariasis. In Parasite Infection and Host Nutrition (ed. Crompton, D. W. T.), Parasitology 82 (Suppl.), S35-S36.Google Scholar
Storey, D. M. (1982a). The host parasite relations in normal and protein malnourished cotton rats infected with Litomosoides carinii (Nematoda: Filaroidea). Parasitology 85, 543–58.CrossRefGoogle Scholar
Storey, D. M. (1982b). Vitamin A deficiency and the development of Litomosoides carinii. Zeitschrift für Parasitenkunde 67, 309–15.CrossRefGoogle ScholarPubMed
Storey, D. M., Wells, P. D. & Kershaw, W. E. (1971). Protein deficiency and cotton rat filariasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 65, 21.Google ScholarPubMed
Weber, F. & Wiss, O. (1968). Changes in enzyme activities as the result of vitamin B6 deficiency. In Vitamins 1967–1968, pp. 720. Basel, Switzerland: Hoffman La Roche.Google Scholar