Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T18:16:07.857Z Has data issue: false hasContentIssue false

Activation and inhibition of the brush-border membrane-bound alkaline phosphatase activity of Hymenolepis diminuta (Cestoda) by divalent cations

Published online by Cambridge University Press:  06 April 2009

P. W. Pappas
Affiliation:
The Department of Zoology, The Ohio State University, Columbus, OH 43210, USA

Summary

In the absence of exogenous divalent cations, the isolated brush-border plasma membrane of Hymenolepis diminuta possesses alkaline phosphatase activity (APA). APA is stimulated in the presence of exogenous Mg2+ and inhibited by low concentrations of Zn2+ or high concentrations of Ca2+, and inhibition of APA by Zn2+ is reversed by both Mg2+ and Ca2+. APA is inhibited by ethylenediamine tetraacetic acid (EDTA), ethyleneglycol-bis-(β-aminoethyl ether) N, N′-tetraacetic acid, and 1, 10-phenanthroline in time- and concentration-dependent fashions, with EDTA being the most effective inhibitor. Following treatment with EDTA, APA is restored by Mg2+ and, to a lesser extent, by Ca2+, but not by Zn2+. Thus, APA represents a Mg2+-dependent enzyme that can be partly activated by Ca2+ but only in the absence of Mg2+.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Conyers, R. A. J., Birkett, D. J., Neale, F. C., Posen, S. & Brudenell-Woods, J. (1967). The action of EDTA on human alkaline phosphatases. Biochimica et Biophysica Acta 139, 363–71.CrossRefGoogle ScholarPubMed
Dike, S. C. & Read, C. P. (1971). Tegumentary phosphohydrolases of Hymenolepis diminuta. Journal of Parasitology 57, 81–7.CrossRefGoogle ScholarPubMed
Hipkiss, J. B. & White, C. J. B. (1985). Ca2+ inhibition of brush-border alkaline phosphatase activity in Hymenolepis diminuta. Zeitschrift für Parasitenkunde 71, 759–63.CrossRefGoogle ScholarPubMed
Hipkiss, J. B., White, C. J. B. & Peters, T. J. (1987). A model linking Ca2+ inhibition of alkaline phosphatase and pH regulation in Hymenolepis diminuta. Biochemical Society Transactions 15, 114–15.CrossRefGoogle Scholar
Kim, E. E. & Wyckoff, H. W. (1989). Structure of alkaline phosphatases. Clinica Chimica Acta 186, 175–88.CrossRefGoogle Scholar
Knowles, W. J. & Oaks, J. A. (1979). Isolation and partial biochemical characterization of the brush border plasma membrane of the cestode, Hymenolepis diminuta. Journal of Parasitology 65, 715–31.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Lumsden, R. D. (1973). Cytological studies on the absorptive surfaces of tapeworms. VII. Evidence for the function of the tegument glycocalyx in cation binding by Hymenolepis diminuta. Journal of Parasitology 59, 1021–30.CrossRefGoogle Scholar
Lumsden, R. D. & Berger, B. (1974). Cytological studies on the absorptive surfaces of cestodes. VIII. Phosphohydrolase activity and cation adsorption in the tegument brush border of Hymenolepis diminuta. Journal of Parasitology 60, 744–51.CrossRefGoogle ScholarPubMed
Markwell, M. A. K., Haas, S. M., Bieber, L. L. & Tolbert, N. E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry 87, 206–10.CrossRefGoogle ScholarPubMed
Pappas, P. W. (1982). Hymenolepis diminuta: partial characterization of the membrane-bound and solubilized alkaline phosphohydrolase activities of the isolated brush border plasma membrane. Experimental Parasitology 54, 80–6.CrossRefGoogle ScholarPubMed
Pappas, P. W. (1983). Host–parasite interface. In Biology of the Eucestoda, Vol. 2 (ed. Arme, C. & Pappas, P. W.), pp. 297334. New York: Academic Press.Google Scholar
Pappas, P. W. & Leiby, D. A. (1986). Variation in the sizes of eggs and oncospheres and the numbers and distributions of testes in the tapeworm, Hymenolepis diminuta. Journal of Parasitology 72, 383–91.CrossRefGoogle ScholarPubMed
Pappas, P. W. & Leiby, D. A. (1989). Competitive, uncompetitive, and mixed inhibitors of the alkaline phosphatase activity associated with the isolated brush border membrane of the tapeworm Hymenolepis diminuta. Journal of Cellular Biochemistry 40, 239–48.CrossRefGoogle ScholarPubMed
Pappas, P. W. & Read, C. P. (1974). Relation of nucleoside transport and surface phosphohydrolase activity in Hymenolepis diminuta. Journal of Parasitology 60, 447–52.Google ScholarPubMed
Rahman, M. S., Mettrick, D. F. & Podesta, R. B. (1981). Properties of a Mg2+-dependent, and Ca2+-inhibited ATPase localized in the brush border of the surface epithelial syncytium of a parasitic flatworm. Canadian Journal of Zoology 59, 918–23.CrossRefGoogle Scholar
Read, C. P., Rothman, A. H. & Simmons, J. E. Jr (1963). Studies on membrane transport, with special reference to parasite–host integration. Annals of the New York Academy of Sciences 113, 154–205. CrossRefGoogle ScholarPubMed