Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T01:28:56.588Z Has data issue: false hasContentIssue false

Acriflavine treatment promotes dyskinetoplasty in Trypanosoma cruzi as revealed by ultrastructural analysis

Published online by Cambridge University Press:  21 August 2013

THIAGO MANCHESTER
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, RJ, Brazil
DANIELLE PEREIRA CAVALCANTI
Affiliation:
Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, RJ, Brazil Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia-Inmetro, RJ, Brazil
MARCELO ZOGOVICH
Affiliation:
Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, RJ, Brazil Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia-Inmetro, RJ, Brazil
WANDERLEY DE SOUZA
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, RJ, Brazil Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia-Inmetro, RJ, Brazil
MARIA CRISTINA MACHADO MOTTA*
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, RJ, Brazil
*
*Corresponding author: Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Ciências da Saúde, Bloco G, subsolo, Rio de Janeiro, RJ, CEP 21949-900, Brazil. E-mail: [email protected]

Summary

Trypanosomatid mitochondrial DNA is structured as a giant network of thousands of interlocked DNA molecules enclosed within the kinetoplast. The structure and replication mechanism of kinetoplast DNA (kDNA) is unique, thereby making it an excellent chemotherapeutic target. Alteration in the structural organization of kDNA can give rise to dyskinetoplastic (Dk) strains. In Dk cells, the kDNA is dispersed in clumps throughout the mitochondrial matrix and not organized into a network. In this work, Trypanosoma cruzi epimastigotes were treated with acriflavine, a DNA intercalating drug, which promoted a decrease in cell proliferation and induced the appearance of Dk protozoa. In treated cells, the kinetoplast lost its normal disc-shaped structure because the fibrillar arrangement was reduced to a compact, amorphous mass within the mitochondrion. Moreover, basic proteins associated with kDNA were redistributed throughout the Dk protozoal kinetoplast. We sought to understand how the disruption of the kDNA leads to the emergence of the Dk phenotype with atomic force microscopy (AFM) analysis of isolated networks. Our results demonstrate that the detachment of minicircles from the kDNA disk promotes the disassembly of the network, thereby generating Dk cells. Our data strongly suggest that acriflavine inhibits T. cruzi multiplication by interfering with kDNA replication.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aphasizhev, R. and Aphasizheva, I. (2011). Mitochondrial RNA processing in trypanosomes. Research in Microbiology 162, 655663.CrossRefGoogle ScholarPubMed
Carpenter, L. R. and Englund, P. T. (1995). Kinetoplast maxicircle DNA replication in Crithidia fasciculata and Trypanosoma brucei. Molecular and Cellular Biology 15, 67946803.CrossRefGoogle ScholarPubMed
Cavalcanti, D. P., Shimada, M. K., Probst, C. M., Souto-Padrón, T. C., De Souza, W., Goldenberg, S., Fragoso, S. P. and Motta, M. C. (2009). Expression and subcellular localization of kinetoplast associated proteins in the different developmental stages of Trypanosoma cruzi. BMC Microbiology 9, 120.CrossRefGoogle ScholarPubMed
Cavalcanti, D. P., Gonçalves, D. L., Costa, L. T. and De Souza, W. (2011). The structure of the kinetoplast DNA network of Crithidia fasciculata revealed by atomic force microscopy. Micron 42, 553559.CrossRefGoogle ScholarPubMed
Das, A., Dasgupta, A., Sengupta, T. and Majumder, H. K. (2004). Topoisomerases of kinetoplastid parasites as potential chemotherapeutic targets. Trends in Parasitology 20, 381387.CrossRefGoogle ScholarPubMed
De Souza, W. (2009). Structural organization of Trypanosoma cruzi. Memórias do Instituto Oswaldo Cruz 104, 89100.CrossRefGoogle Scholar
De Souza, W. and Cavalcanti, D. P. (2007). DNA-containing organelles in pathogenic protozoa: a review. Trends in Cell and Molecular Biology 2, 89104.Google Scholar
Guilbride, D. L. and Englund, P. T. (1998). The replication mechanism of kinetoplast DNA networks in several trypanosomatid species. Journal of Cell Science 111, 675679.CrossRefGoogle ScholarPubMed
Hajduk, S. L. (1979). Dyskinetoplasty in two species of trypanosomatids. Journal of Cell Science 35, 185202.CrossRefGoogle ScholarPubMed
Hajduk, S. L. and Cosgrove, W. B. (1979). Kinetoplast DNA from normal and dyskinetoplastic strains of Trypanosoma equiperdum. Biochimica et Biophysica Acta 561, 19.CrossRefGoogle ScholarPubMed
Hill, G. C. and Anderson, W. A. (1969). Effects of acriflavine on the mitochondria and kinetoplast of Crithidia fasciculata. Journal of Cell Biology 41, 547561.CrossRefGoogle ScholarPubMed
Inoki, S., Sakamoto, H., Ono, T. and Kubo, R. (1961). Studies on the Ak forms of Trypanosoma evansi. I. Effect of acriflavine on the appearance of the Ak forms. Biken Journal 4, 6773.Google Scholar
Jensen, R. E. and Englund, P. T. (2012). Network news: the replication of kinetoplast DNA. Annual Review of Microbiology 66, 473491.CrossRefGoogle ScholarPubMed
Liu, B., Liu, Y., Motyka, S. A., Agbo, E. E. C. and Englund, P. T. (2005). Fellowship of the rings: the replication of kinetoplast DNA. Trends in Parasitology 21, 363369.CrossRefGoogle ScholarPubMed
Liu, B., Wang, J., Yaffe, N., Lindsay, M. E., Zhao, Z., Zick, A., Shlomai, J. and Englund, P. T. (2009). Trypanosomes have six mitochondrial. DNA helicases with one controlling kinetoplast maxicircle replication. Molecular Cell 35, 490501.CrossRefGoogle ScholarPubMed
Liu, Y. and Englund, P. T. (2007). The rotational dynamics of kinetoplast DNA replication. Molecular Microbiology 64, 676690.CrossRefGoogle ScholarPubMed
Manaia, A. C. and Roitman, I. (1977). Effect of ethidium bromide on the oxidative metabolism and enzyme profiles of Crithidia fasciculata. Journal of Protozoology 24, 192195.CrossRefGoogle ScholarPubMed
Morris, J. C., Drew, M. E., Klingbeil, M. M., Motyka, S. A., Saxowsky, T. T., Wang, Z. and Englund, P. T. (2001). Replication of kinetoplast DNA: an update for the new millennium. International Journal of Parasitology 31, 453458.CrossRefGoogle ScholarPubMed
Motta, M. C. M. (2008). Kinetoplast as a potential chemotherapeutic target of trypanosomatids. Current Pharmaceutical Design 14, 847854.CrossRefGoogle ScholarPubMed
Ogbadoyi, E. O., Robinson, D. R. and Gull, K. (2003). A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Molecular Biology of the Cell 14, 17691779.CrossRefGoogle ScholarPubMed
Pérez-Morga, D. L. and Englund, P. T. (1993). The structure of replicating kinetoplast DNA networks. Journal of Cell Biology 123, 10691079.CrossRefGoogle ScholarPubMed
Riou, G. and Paoletti, C. (1967). Preparation and properties of nuclear and satellite deoxyribonucleic acid of Trypanosoma cruzi. Journal of Molecular Biology 28, 377382.CrossRefGoogle ScholarPubMed
Robertson, M. (1929). The action of acriflavine upon Bodo caudatus. Parasitology 21, 375416.CrossRefGoogle Scholar
Roy Chowdhury, A., Bakshi, R., Wang, J., Yildirir, G., Liu, B., Pappas-Brown, V., Tolun, G., Griffith, J. D., Shapiro, T. A., Jensen, R. E. and Englund, P. T. (2010). The killing of African trypanosomes by ethidium bromide. PLoS Pathogens 6, e1001226.CrossRefGoogle ScholarPubMed
Shapiro, T. A. and Englund, P. T. (1995). The structure and replication of kinetoplast DNA. Annual Review of Microbiology 49, 117143.CrossRefGoogle ScholarPubMed
Shapiro, T. A., Klein, V. A. and Englund, P. T. (1989). Drug-promoted cleavage of kinetoplast DNA minicircles. Journal of Biological Chemistry 264, 41734178.CrossRefGoogle ScholarPubMed
Schnaufer, A., Domingo, G. J. and Stuart, K. (2002). Natural and induced dyskinetoplastic trypanosomatids: how to live without mitochondrial DNA. International Journal for Parasitology 32, 10711084.CrossRefGoogle ScholarPubMed
Simpson, L. (1968). Effect of acriflavine on the kinetoplast of Leishmania tarentolae. Journal of Cell Biology 37, 660682.CrossRefGoogle ScholarPubMed
Souto-Padrón, T. and De Souza, W. (1978). Ultrastructural localization of basic proteins in Trypanosoma cruzi. Journal of Histochemistry and Cytochemistry 26, 349358.CrossRefGoogle ScholarPubMed
Steinert, M. and Van Assel, S. (1967). Effets de l'acriflavine sur le kinétoplaste. Societé Belge de Biochimie 75, 184185.Google Scholar
Stuart, K. D. (1971). Evidence for the retention of kinetoplast DNA in an acriflavine induced diskinetoplastic strain of Trypanosoma brucei which replicates the altered central element of the kinetoplast. Journal of Cell Biology 49, 189195.CrossRefGoogle Scholar
Stuart, K. D., Schnaufer, A., Ernst, N. L. and Panigrahi, A. K. (2005). Complex management: RNA editing in trypanosomes. Trends in Biochemical Sciences 30, 97105.CrossRefGoogle ScholarPubMed
Trager, W. and Rudzinska, M. A. (1964). The riboflavin requirement and the effects of acriflavin on the fine structure of the kinetoplast of Leishmania tarentolae. Journal of Protozoology 11, 133145.CrossRefGoogle ScholarPubMed
Tubbs, R. K., Ditmars, W. E. and Van Winkle, Q. (1964). Heterogeneity of the interaction of DNA with acriflavine. Journal of Molecular Biology 9, 545557.CrossRefGoogle ScholarPubMed
Wainwright, M. (2001). Acridine – a neglected antibacterial chromophore. Journal of Antimicrobial Chemotherapy 47, 113.CrossRefGoogle ScholarPubMed
Wang, Z. and Englund, P. T. (2001). RNA interference of a trypanosome topoisomerase II causes progressive loss of mitochondrial DNA. EMBO Journal 20, 46724683.CrossRefGoogle ScholarPubMed
Wang, J., Englund, P. T. and Jensen, R. E. (2012). TbPIF8, a Trypanosoma brucei protein related to the yeast Pif1 helicase, is essential for cell viability and mitochondrial genome maintenance. Molecular Microbiology 83, 471485.CrossRefGoogle Scholar
Xu, C. and Ray, D. S. (1993). Isolation of proteins associated with kinetoplast DNA networks in vivo. Proceedings of the National Academy of Sciences USA 90, 17861789.CrossRefGoogle ScholarPubMed